Package: betaselectr 0.1.0

Shu Fai Cheung

betaselectr: Betas-Select in Structural Equation Models and Linear Models

It computes betas-select, coefficients after standardization in structural equation models and regression models, standardizing only selected variables. Supports models with moderation, with product terms formed after standardization. It also offers confidence intervals that account for standardization, including bootstrap confidence intervals as proposed by Cheung et al. (2022) <doi:10.1037/hea0001188>.

Authors:Shu Fai Cheung [aut, cre], Rong Wei Sun [aut], Florbela Chang [aut], Wendie Yang [aut], Sing-Hang Cheung [aut]

betaselectr_0.1.0.tar.gz
betaselectr_0.1.0.tar.gz(r-4.5-noble)betaselectr_0.1.0.tar.gz(r-4.4-noble)
betaselectr_0.1.0.tgz(r-4.4-emscripten)betaselectr_0.1.0.tgz(r-4.3-emscripten)
betaselectr.pdf |betaselectr.html
betaselectr/json (API)
NEWS

# Install 'betaselectr' in R:
install.packages('betaselectr', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sfcheung/betaselectr/issues

Datasets:

3.18 score 8 scripts 5 exports 39 dependencies

Last updated 13 days agofrom:ad8b869da8. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-linuxOKNov 12 2024

Exports:glm_betaselectlav_betaselectlm_betaselectraw_outputstd_data

Dependencies:bootclicolorspacecpp11fansifarverggplot2gluegtableigraphisobandlabelinglatticelavaanlavaan.printerlifecyclemagrittrmanymomeMASSMatrixmgcvmnormtmunsellnlmenumDerivpbapplypbivnormpillarpkgconfigquadprogR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Beta-Select Demonstration: Logistic Regression by glm()

Rendered frombetaselectr_glm.Rmdusingknitr::rmarkdownon Nov 12 2024.

Last update: 2024-11-11
Started: 2024-11-11

Beta-Select Demonstration: Regression by lm()

Rendered frombetaselectr_lm.Rmdusingknitr::rmarkdownon Nov 12 2024.

Last update: 2024-11-11
Started: 2024-11-11

Beta-Select Demonstration: SEM by 'lavaan'

Rendered frombetaselectr_lav.Rmdusingknitr::rmarkdownon Nov 12 2024.

Last update: 2024-11-11
Started: 2024-11-11

Readme and manuals

Help Manual

Help pageTopics
ANOVA Tables For 'lm_betaselect' and 'glm_betaselect' Objectsanova.glm_betaselect anova.lm_betaselect
Coefficients of a 'lav_betaselect'-Class Objectcoef.lav_betaselect
Coefficients of Beta-Select in Linear Modelscoef.glm_betaselect coef.lm_betaselect
Confidence Intervals for a 'lav_betaselect'-Class Objectconfint.lav_betaselect
Confidence Interval for 'lm_betaselect' or 'glm_betaselect' Objectsconfint.glm_betaselect confint.lm_betaselect
Test Dataset with Moderator and Mediatordata_test_medmod
Test Dataset with Moderator and Categorical Variablesdata_test_mod_cat
Test Dataset with a Binary Outcome Variabledata_test_mod_cat_binary
Test Dataset with Moderator and Categorical Variables (Version 2)data_test_mod_cat2
Call in an 'lm_betaselect' or 'glm_betaselect' ObjectgetCall.glm_betaselect getCall.lm_betaselect
Betas-Select in a 'lavaan'-Modellav_betaselect
Betas-Select in a Regression Modelglm_betaselect lm_betaselect print.glm_betaselect print.lm_betaselect raw_output
Predict Method for a 'glm_betaselect' Objectpredict.glm_betaselect
Predict Method for an 'lm_betaselect' Objectpredict.lm_betaselect
Print a 'lav_betaselect' Objectprint.lav_betaselect
Standardize Selected Variablesstd_data
Summary of an 'glm_betaselect'-Class Objectprint.summary.glm_betaselect summary.glm_betaselect
Summary of an 'lm_betaselect'-Class Objectprint.summary.lm_betaselect summary.lm_betaselect
The 'vcov' Method for 'lm_betaselect' and 'glm_betaselect' Objectsvcov.glm_betaselect vcov.lm_betaselect