Package: betaselectr 0.1.0

Shu Fai Cheung

betaselectr: Betas-Select in Structural Equation Models and Linear Models

It computes betas-select, coefficients after standardization in structural equation models and regression models, standardizing only selected variables. Supports models with moderation, with product terms formed after standardization. It also offers confidence intervals that account for standardization, including bootstrap confidence intervals as proposed by Cheung et al. (2022) <doi:10.1037/hea0001188>.

Authors:Shu Fai Cheung [aut, cre], Rong Wei Sun [aut], Florbela Chang [aut], Wendie Yang [aut], Sing-Hang Cheung [aut]

betaselectr_0.1.0.tar.gz
betaselectr_0.1.0.tar.gz(r-4.5-noble)betaselectr_0.1.0.tar.gz(r-4.4-noble)
betaselectr_0.1.0.tgz(r-4.4-emscripten)betaselectr_0.1.0.tgz(r-4.3-emscripten)
betaselectr.pdf |betaselectr.html
betaselectr/json (API)
NEWS

# Install 'betaselectr' in R:
install.packages('betaselectr', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/sfcheung/betaselectr/issues0 issues

Pkgdown site:https://sfcheung.github.io

Datasets:

On CRAN:

Conda:

3.18 score 576 downloads 5 exports 39 dependencies

Last updated 5 months agofrom:ad8b869da8. Checks:2 OK, 1 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 12 2025
R-4.5-linuxOKMar 12 2025
R-4.4-linuxNOTEMar 12 2025

Exports:glm_betaselectlav_betaselectlm_betaselectraw_outputstd_data

Dependencies:bootclicolorspacecpp11fansifarverggplot2gluegtableigraphisobandlabelinglatticelavaanlavaan.printerlifecyclemagrittrmanymomeMASSMatrixmgcvmnormtmunsellnlmenumDerivpbapplypbivnormpillarpkgconfigquadprogR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Beta-Select Demonstration: Logistic Regression by glm()

Rendered frombetaselectr_glm.Rmdusingknitr::rmarkdownon Mar 12 2025.

Last update: 2024-11-11
Started: 2024-11-11

Beta-Select Demonstration: Regression by lm()

Rendered frombetaselectr_lm.Rmdusingknitr::rmarkdownon Mar 12 2025.

Last update: 2024-11-11
Started: 2024-11-11

Beta-Select Demonstration: SEM by 'lavaan'

Rendered frombetaselectr_lav.Rmdusingknitr::rmarkdownon Mar 12 2025.

Last update: 2024-11-11
Started: 2024-11-11

Citation

To cite package ‘betaselectr’ in publications use:

Cheung S, Sun R, Chang F, Yang W, Cheung S (2024). betaselectr: Betas-Select in Structural Equation Models and Linear Models. R package version 0.1.0, https://CRAN.R-project.org/package=betaselectr.

Corresponding BibTeX entry:

  @Manual{,
    title = {betaselectr: Betas-Select in Structural Equation Models
      and Linear Models},
    author = {Shu Fai Cheung and Rong Wei Sun and Florbela Chang and
      Wendie Yang and Sing-Hang Cheung},
    year = {2024},
    note = {R package version 0.1.0},
    url = {https://CRAN.R-project.org/package=betaselectr},
  }

Readme and manuals

betaselectr: Do Selective Standardization in Structural Equation Models and Regression Models

(Version 0.1.0, updated on 2024-11-08, release history)

It computes betas-select, coefficients (betas) after standardization in structural equation models and regression models with only selected variables standardized. It supports models with moderation, with product terms formed appropriately (formed after standardization). It can also form confidence intervals that takes into account the standardization appropriately.

For more information on this package, please visit its GitHub page:

https://sfcheung.github.io/betaselectr/

Installation

The latest developmental version of this package can be installed by remotes::install_github:

remotes::install_github("sfcheung/betaselectr")

Issues

If you have any suggestions and found any bugs, please feel feel to open a GitHub issue. Thanks.

https://github.com/sfcheung/betaselectr/issues

Help Manual

Help pageTopics
ANOVA Tables For 'lm_betaselect' and 'glm_betaselect' Objectsanova.glm_betaselect anova.lm_betaselect
Coefficients of a 'lav_betaselect'-Class Objectcoef.lav_betaselect
Coefficients of Beta-Select in Linear Modelscoef.glm_betaselect coef.lm_betaselect
Confidence Intervals for a 'lav_betaselect'-Class Objectconfint.lav_betaselect
Confidence Interval for 'lm_betaselect' or 'glm_betaselect' Objectsconfint.glm_betaselect confint.lm_betaselect
Test Dataset with Moderator and Mediatordata_test_medmod
Test Dataset with Moderator and Categorical Variablesdata_test_mod_cat
Test Dataset with a Binary Outcome Variabledata_test_mod_cat_binary
Test Dataset with Moderator and Categorical Variables (Version 2)data_test_mod_cat2
Call in an 'lm_betaselect' or 'glm_betaselect' ObjectgetCall.glm_betaselect getCall.lm_betaselect
Betas-Select in a 'lavaan'-Modellav_betaselect
Betas-Select in a Regression Modelglm_betaselect lm_betaselect print.glm_betaselect print.lm_betaselect raw_output
Predict Method for a 'glm_betaselect' Objectpredict.glm_betaselect
Predict Method for an 'lm_betaselect' Objectpredict.lm_betaselect
Print a 'lav_betaselect' Objectprint.lav_betaselect
Standardize Selected Variablesstd_data
Summary of an 'glm_betaselect'-Class Objectprint.summary.glm_betaselect summary.glm_betaselect
Summary of an 'lm_betaselect'-Class Objectprint.summary.lm_betaselect summary.lm_betaselect
The 'vcov' Method for 'lm_betaselect' and 'glm_betaselect' Objectsvcov.glm_betaselect vcov.lm_betaselect