Package: beeca 0.2.0

Alex Przybylski

beeca: Binary Endpoint Estimation with Covariate Adjustment

Performs estimation of marginal treatment effects for binary outcomes when using logistic regression working models with covariate adjustment (see discussions in Magirr et al (2024) <https://osf.io/9mp58/>). Implements the variance estimators of Ge et al (2011) <doi:10.1177/009286151104500409> and Ye et al (2023) <doi:10.1080/24754269.2023.2205802>.

Authors:Alex Przybylski [cre, aut], Mark Baillie [aut], Craig Wang [aut], Dominic Magirr [aut]

beeca_0.2.0.tar.gz
beeca_0.2.0.tar.gz(r-4.5-noble)beeca_0.2.0.tar.gz(r-4.4-noble)
beeca_0.2.0.tgz(r-4.4-emscripten)beeca_0.2.0.tgz(r-4.3-emscripten)
beeca.pdf |beeca.html
beeca/json (API)
NEWS

# Install 'beeca' in R:
install.packages('beeca', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/openpharma/beeca/issues

Datasets:
  • ge_macro_trial01 - Output from the Ge et al (2011) SAS macro applied to the trial01 dataset
  • margins_trial01 - Output from the Margins SAS macro applied to the trial01 dataset
  • trial01 - Example trial dataset 01
  • trial02_cdisc - Example CDISC Clinical Trial Dataset in ADaM Format

3.00 score 5 scripts 552 downloads 6 exports 19 dependencies

Last updated 9 days agofrom:50d112956e. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-linuxOKNov 13 2024

Exports:apply_contrastaverage_predictionsestimate_varcovget_marginal_effectpredict_counterfactualssanitize_model

Dependencies:clidplyrfansigenericsgluelatticelifecyclemagrittrpillarpkgconfigR6rlangsandwichtibbletidyselectutf8vctrswithrzoo

Introduction to estimating a marginal estimand with beeca

Rendered fromestimand_and_implementations.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2024-11-12
Started: 2024-06-19