This package is considered a duplicate. The official version of this package is found at:https://jingyuhe.r-universe.dev/bayeslm
Package: bayeslm 1.0.1
bayeslm: Efficient Sampling for Gaussian Linear Regression with Arbitrary Priors
Efficient sampling for Gaussian linear regression with arbitrary priors, Hahn, He and Lopes (2018) <arxiv:1806.05738>.
Authors:
bayeslm_1.0.1.tar.gz
bayeslm_1.0.1.tar.gz(r-4.5-noble)bayeslm_1.0.1.tar.gz(r-4.4-noble)
bayeslm_1.0.1.tgz(r-4.4-emscripten)bayeslm_1.0.1.tgz(r-4.3-emscripten)
bayeslm.pdf |bayeslm.html✨
bayeslm/json (API)
# Install 'bayeslm' in R: |
install.packages('bayeslm', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jingyuhe/bayeslm/issues
Last updated 2 years agofrom:afc4ce623c. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 20 2024 |
Exports:bayeslmhs_gibbsplot.MCMCsummary.bayeslm.fitsummary.MCMC
Dependencies:codalatticeRcppRcppArmadilloRcppParallel
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Efficient sampling for Gaussian linear regression with arbitrary priors | bayeslm-package |
Efficient sampling for Gaussian linear model with arbitrary priors | bayeslm bayeslm.default bayeslm.formula |
Gibbs sampler of horseshoe regression | hs_gibbs |
Plot posterior summary | plot.MCMC |
Predict new data | predict.bayeslm.fit |
Summarize fitted object of 'bayeslm' | summary.bayeslm.fit |
Summarize posterior draws | summary.MCMC |