Package: bayesianVARs 0.1.5
Luis Gruber
bayesianVARs: MCMC Estimation of Bayesian Vectorautoregressions
Efficient Markov Chain Monte Carlo (MCMC) algorithms for the fully Bayesian estimation of vectorautoregressions (VARs) featuring stochastic volatility (SV). Implements state-of-the-art shrinkage priors following Gruber & Kastner (2023) <doi:10.48550/arXiv.2206.04902>. Efficient equation-per-equation estimation following Kastner & Huber (2020) <doi:10.1002/for.2680> and Carrerio et al. (2021) <doi:10.1016/j.jeconom.2021.11.010>.
Authors:
bayesianVARs_0.1.5.tar.gz
bayesianVARs_0.1.5.tar.gz(r-4.5-noble)bayesianVARs_0.1.5.tar.gz(r-4.4-noble)
bayesianVARs.pdf |bayesianVARs.html✨
bayesianVARs/json (API)
NEWS
# Install 'bayesianVARs' in R: |
install.packages('bayesianVARs', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/luisgruber/bayesianvars/issues
- usmacro_growth - Data from the US-economy
Last updated 11 days agofrom:f4eabc524e. Checks:OK: 1 WARNING: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 14 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 14 2024 |
Exports:bvarmy_gigposterior_heatmapspecify_prior_phispecify_prior_sigmastable_bvar
Dependencies:clicodacolorspacecorrplotfactorstochvolfarverGIGrvggluelabelinglatticelifecycleMASSmunsellmvtnormR6RColorBrewerRcppRcppArmadilloRcppProgressrlangscalesstochvolviridisLite