Package: bayesianVARs 0.1.5

Luis Gruber

bayesianVARs: MCMC Estimation of Bayesian Vectorautoregressions

Efficient Markov Chain Monte Carlo (MCMC) algorithms for the fully Bayesian estimation of vectorautoregressions (VARs) featuring stochastic volatility (SV). Implements state-of-the-art shrinkage priors following Gruber & Kastner (2023) <doi:10.48550/arXiv.2206.04902>. Efficient equation-per-equation estimation following Kastner & Huber (2020) <doi:10.1002/for.2680> and Carrerio et al. (2021) <doi:10.1016/j.jeconom.2021.11.010>.

Authors:Luis Gruber [cph, aut, cre], Gregor Kastner [ctb]

bayesianVARs_0.1.5.tar.gz
bayesianVARs_0.1.5.tar.gz(r-4.5-noble)bayesianVARs_0.1.5.tar.gz(r-4.4-noble)
bayesianVARs.pdf |bayesianVARs.html
bayesianVARs/json (API)
NEWS

# Install 'bayesianVARs' in R:
install.packages('bayesianVARs', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/luisgruber/bayesianvars/issues2 issues

Pkgdown site:https://luisgruber.github.io

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

Conda:

openblascpp

3.18 score 1 stars 805 downloads 6 exports 23 dependencies

Last updated 5 months agofrom:f4eabc524e. Checks:1 OK, 2 WARNING. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 14 2025
R-4.5-linux-x86_64WARNINGMar 14 2025
R-4.4-linux-x86_64WARNINGMar 14 2025

Exports:bvarmy_gigposterior_heatmapspecify_prior_phispecify_prior_sigmastable_bvar

Dependencies:clicodacolorspacecorrplotfactorstochvolfarverGIGrvggluelabelinglatticelifecycleMASSmunsellmvtnormR6RColorBrewerRcppRcppArmadilloRcppProgressrlangscalesstochvolviridisLite

Shrinkage Priors for Bayesian Vectorautoregressions featuring Stochastic Volatility Using the R Package bayesianVARs

Rendered frombayesianVARs-vignette.Rmdusingknitr::rmarkdownon Mar 14 2025.

Last update: 2024-01-18
Started: 2024-01-14

Citation

To cite package ‘bayesianVARs’ in publications use:

Gruber L (2024). bayesianVARs: MCMC Estimation of Bayesian Vectorautoregressions. R package version 0.1.5, https://CRAN.R-project.org/package=bayesianVARs.

Corresponding BibTeX entry:

  @Manual{,
    title = {bayesianVARs: MCMC Estimation of Bayesian
      Vectorautoregressions},
    author = {Luis Gruber},
    year = {2024},
    note = {R package version 0.1.5},
    url = {https://CRAN.R-project.org/package=bayesianVARs},
  }

Readme and manuals

bayesianVARs

Estimation of Bayesian vectorautoregressions with/without stochastic volatility.

Implements several modern hierarchical shrinkage priors, amongst them Dirichlet-Laplace prior (DL), hierarchical Minnesota prior (HM), Horseshoe prior (HS), normal-gamma prior (NG), $R^2$-induced-Dirichlet-decomposition prior (R2D2) and stochastic search variable selection prior (SSVS).

Concerning the error-term, the user can either specify an order-invariant factor structure or an order-variant cholesky structure.

Installation

Install CRAN version:

install.packages("bayesianVARs")

Install latest development version directly from GitHub:

devtools::install_github("luisgruber/bayesianVARs")

Usage

The main workhorse to conduct Bayesian inference for vectorautoregression models in this package is the function bvar().

Some features:

  • Prediction, plotting, extraction of model parameters and extraction of fitted values with the usual generic functions predict(), plot(), coef(), vcov() and fitted().
  • Configure prior distributions with helper functions specify_prior_phi() and specify_prior_sigma().

Demonstration

set.seed(537)
# load package
library(bayesianVARs)

# Load data
train_data <-100 * usmacro_growth[1:237,c("GDPC1", "PCECC96", "GPDIC1", "AWHMAN", "GDPCTPI", "CES2000000008x", "FEDFUNDS", "GS10", "EXUSUKx", "S&P 500")]
test_data <-100 * usmacro_growth[238:241,c("GDPC1", "PCECC96", "GPDIC1", "AWHMAN", "GDPCTPI", "CES2000000008x", "FEDFUNDS", "GS10", "EXUSUKx", "S&P 500")]
                                   
# Estimate model using default prior settings
mod <- bvar(train_data, lags = 2L, draws = 2000, burnin = 1000, sv_keep = "all")

# Out of sample prediction and log-predictive-likelihood evaluation
pred <- predict(mod, ahead = 1:4, LPL = TRUE, Y_obs = test_data)

# Visualize in-sample fit plus out-of-sample prediction intervals
plot(mod, predictions = pred)

Documentation

bayesianVARs - Shrinkage Priors for Bayesian Vectorautoregressions in R

Help Manual

Help pageTopics
Extract or Replace Parts of a bayesianVARs_coef object[.bayesianVARs_coef
Extract or Replace Parts of a bayesianVARs_draws object[.bayesianVARs_draws
Markov Chain Monte Carlo Sampling for Bayesian Vectorautoregressionsbvar
Extract VAR coefficientscoef coef.bayesianVARs_bvar
Simulate fitted/predicted historical values for an estimated VAR modelfitted.bayesianVARs_bvar
Draw from generalized inverse Gaussianmy_gig
Pairwise visualization of out-of-sample posterior predictive densities.pairs.bayesianVARs_predict pairs_predict
Plot method for bayesianVARs_bvarplot.bayesianVARs_bvar
Visualization of in-sample fit of an estimated VAR.plot.bayesianVARs_fitted
Fan chartplot.bayesianVARs_predict
Posterior heatmaps for VAR coefficients or variance-covariance matricesposterior_heatmap
Predict method for Bayesian VARspredict.bayesianVARs_bvar
Pretty printing of a bvar objectprint.bayesianVARs_bvar
Print method for bayesianVARs_predict objectsprint.bayesianVARs_predict
Print method for summary.bayesianVARs_bvar objectsprint.summary.bayesianVARs_bvar
Print method for summary.bayesianVARs_predict objectsprint.summary.bayesianVARs_predict
Specify prior on PHIspecify_prior_phi
Specify prior on Sigmaspecify_prior_sigma
Stable posterior drawsstable_bvar
Summary method for bayesianVARs_bvar objectssummary.bayesianVARs_bvar
Summary statistics for bayesianVARs posterior draws.summary.bayesianVARs_draws
Summary method for bayesianVARs_predict objectssummary.bayesianVARs_predict
Data from the US-economyusmacro_growth
Extract posterior draws of the (time-varying) variance-covariance matrix for a VAR modelvcov.bayesianVARs_bvar