Package: bayescount 0.9.99-9

Matthew Denwood

bayescount: Power Calculations and Bayesian Analysis of Count Distributions and FECRT Data using MCMC

A set of functions to allow analysis of count data (such as faecal egg count data) using Bayesian MCMC methods. Returns information on the possible values for mean count, coefficient of variation and zero inflation (true prevalence) present in the data. A complete faecal egg count reduction test (FECRT) model is implemented, which returns inference on the true efficacy of the drug from the pre- and post-treatment data provided, using non-parametric bootstrapping as well as using Bayesian MCMC. Functions to perform power analyses for faecal egg counts (including FECRT) are also provided.

Authors:Matthew Denwood [aut, cre]

bayescount_0.9.99-9.tar.gz
bayescount_0.9.99-9.tar.gz(r-4.5-noble)bayescount_0.9.99-9.tar.gz(r-4.4-noble)
bayescount_0.9.99-9.tgz(r-4.4-emscripten)bayescount_0.9.99-9.tgz(r-4.3-emscripten)
bayescount.pdf |bayescount.html
bayescount/json (API)

# Install 'bayescount' in R:
install.packages('bayescount', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

jagscpp

1.00 score 9 scripts 391 downloads 1 mentions 33 exports 4 dependencies

Last updated 12 months agofrom:0a301ff999. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 03 2024
R-4.5-linux-x86_64OKDec 03 2024

Exports:bayescountbayescount.singlecount.analysiscount.modelcount.powercount.precisionfec.analysisFEC.analysisfec.modelFEC.modelfec.powerFEC.powerfec.power.limitsFEC.power.limitsfec.precisionFEC.precisionfecrtFECRTfecrt.analysisFECRT.analysisfecrt.modelFECRT.modelfecrt.powerFECRT.powerfecrt.power.limitsFECRT.power.limitsfecrt.precisionFECRT.precisionlikelihoodlnormal.paramsmaximise.likelihoodnormal.paramsrun.model

Dependencies:codalatticerjagsrunjags