Package: bain 0.2.11
bain: Bayes Factors for Informative Hypotheses
Computes approximated adjusted fractional Bayes factors for equality, inequality, and about equality constrained hypotheses. For a tutorial on this method, see Hoijtink, Mulder, van Lissa, & Gu, (2019) <doi:10.1037/met0000201>. For applications in structural equation modeling, see: Van Lissa, Gu, Mulder, Rosseel, Van Zundert, & Hoijtink, (2021) <doi:10.1080/10705511.2020.1745644>. For the statistical underpinnings, see Gu, Mulder, and Hoijtink (2018) <doi:10.1111/bmsp.12110>; Hoijtink, Gu, & Mulder, J. (2019) <doi:10.1111/bmsp.12145>; Hoijtink, Gu, Mulder, & Rosseel, (2019) <doi:10.31234/osf.io/q6h5w>.
Authors:
bain_0.2.11.tar.gz
bain_0.2.11.tar.gz(r-4.5-noble)bain_0.2.11.tar.gz(r-4.4-noble)
bain_0.2.11.tgz(r-4.4-emscripten)bain_0.2.11.tgz(r-4.3-emscripten)
bain.pdf |bain.html✨
bain/json (API)
# Install 'bain' in R: |
install.packages('bain', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/cjvanlissa/bain/issues11 issues
- kuiper2013 - The Effect of Prior Interaction on Trust
- sesamesim - Simulated Sesame Street Data
- synthetic_dk - Simulated data about morality and politics in Denmark
- synthetic_nl - Simulated data about morality and politics in The Netherlands
- synthetic_us - Simulated data about morality and politics in the USA
Conda:r-bain-0.2.11(2025-03-25)
Last updated 10 months agofrom:8e4db29070. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 10 2025 |
R-4.5-linux-x86_64 | OK | Mar 10 2025 |
R-4.4-linux-x86_64 | OK | Mar 10 2025 |
Citation
To cite package ‘bain’ in publications use:
Gu X, Hoijtink H, Mulder J, van Lissa CJ (2024). bain: Bayes Factors for Informative Hypotheses. R package version 0.2.11, https://CRAN.R-project.org/package=bain.
Corresponding BibTeX entry:
@Manual{, title = {bain: Bayes Factors for Informative Hypotheses}, author = {Xin Gu and Herbert Hoijtink and Joris Mulder and Caspar J {van Lissa}}, year = {2024}, note = {R package version 0.2.11}, url = {https://CRAN.R-project.org/package=bain}, }
Readme and manuals
bain
Bain stands for Bayesian informative hypothesis evaluation. It computes Bayes factors for informative hypotheses in a wide variety of statistical models. Just run your analysis as usual, and then apply bain to the output. A tutorial is available at DOI:10.1037/met0000201. A sequel with the focus on Structural Equation Models is available at https://doi.org/10.1080/10705511.2020.1745644.
Installation
Install the latest release version of bain
from CRAN:
install.packages("bain")
You can also install the latest development version of bain
from
GitHub. This requires a working toolchain, to compile the Fortran source
code. Step 3 in this
tutorial
explains how to set up the toolchain. Then, run:
install.packages("devtools")
devtools::install_github("cjvanlissa/bain")
Workflow
Add bain to your existing R workflow, and obtain Bayes factors for your familiar R analyses! Bain is compatible with the pipe operator. Here is an example for testing an informative hypothesis about mean differences in an ANOVA:
# Load bain
library(bain)
# dplyr to access the %>% operator
library(dplyr)
# Iris as example data
iris %>%
# Select outcome and predictor variables
select(Sepal.Length, Species) %>%
# Add -1 to the formula to estimate group means, as in ANOVA
lm(Sepal.Length ~ -1 + Species, .) %>%
bain("Speciessetosa < Speciesversicolor = Speciesvirginica;
Speciessetosa < Speciesversicolor < Speciesvirginica")
#> Bayesian informative hypothesis testing for an object of class lm (ANOVA):
#>
#> Fit Com BF.u BF.c PMPa PMPb PMPc
#> H1 0.000 0.224 0.000 0.000 0.000 0.000 0.000
#> H2 1.000 0.166 6.027 502986932347.232 1.000 0.858 1.000
#> Hu 0.142
#> Hc 0.000 0.834 0.000 0.000
#>
#> Hypotheses:
#> H1: Speciessetosa<Speciesversicolor=Speciesvirginica
#> H2: Speciessetosa<Speciesversicolor<Speciesvirginica
#>
#> Note: BF.u denotes the Bayes factor of the hypothesis at hand versus the unconstrained hypothesis Hu. BF.c denotes the Bayes factor of the hypothesis at hand versus its complement. PMPa contains the posterior model probabilities of the hypotheses specified. PMPb adds Hu, the unconstrained hypothesis. PMPc adds Hc, the complement of the union of the hypotheses specified.
Documentation
Every user-facing function in the package is documented, and the
documentation can be accessed by running ?function_name
in the R
console, e.g., ?bain
.
Moreover, you can read the Introduction to bain vignette by running
vignette("Introduction_to_bain", package = "bain")
Citing bain
You can cite the R-package with the following citation:
Gu, X., Hoijtink, H., Mulder, J., & van Lissa, C. (2019). bain: Bayes factors for informative hypotheses. (Version 0.2.3) [R package]. https://CRAN.R-project.org/package=bain
Contributing and Contact Information
If you have ideas, please get involved. You can contribute by opening an issue on GitHub, or sending a pull request with proposed features. Contributions in code must adhere to the tidyverse style guide.
By participating in this project, you agree to abide by the Contributor Code of Conduct v2.0.
Help Manual
Help page | Topics |
---|---|
Bayes factors for informative hypotheses | bain |
Sensitivity analysis for bain | bain_sensitivity |
The Effect of Prior Interaction on Trust | kuiper2013 |
Product Bayes Factor | pbf pbf.default pbf.numeric |
Standard Errors and CIs for Standardized Regression Coefficients | seBeta |
Simulated Sesame Street Data | sesamesim |
Simulated data about morality and politics in Denmark | synthetic_dk |
Simulated data about morality and politics in The Netherlands | synthetic_nl |
Simulated data about morality and politics in the USA | synthetic_us |
Student's t-test | t_test |