Package: aorsf 0.1.5
aorsf: Accelerated Oblique Random Forests
Fit, interpret, and compute predictions with oblique random forests. Includes support for partial dependence, variable importance, passing customized functions for variable importance and identification of linear combinations of features. Methods for the oblique random survival forest are described in Jaeger et al., (2023) <doi:10.1080/10618600.2023.2231048>.
Authors:
aorsf_0.1.5.tar.gz
aorsf_0.1.5.tar.gz(r-4.5-noble)aorsf_0.1.5.tar.gz(r-4.4-noble)
aorsf_0.1.5.tgz(r-4.4-emscripten)aorsf_0.1.5.tgz(r-4.3-emscripten)
aorsf.pdf |aorsf.html✨
aorsf/json (API)
NEWS
# Install 'aorsf' in R: |
install.packages('aorsf', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ropensci/aorsf/issues
Pkgdown:https://docs.ropensci.org
- pbc_orsf - Mayo Clinic Primary Biliary Cholangitis Data
- penguins_orsf - Size measurements for adult foraging penguins near Palmer Station, Antarctica
Last updated 6 months agofrom:41bfdccaeb. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 27 2024 |
R-4.5-linux-x86_64 | OK | Nov 27 2024 |
Exports:orsforsf_controlorsf_control_classificationorsf_control_cphorsf_control_customorsf_control_fastorsf_control_netorsf_control_regressionorsf_control_survivalorsf_ice_inborsf_ice_neworsf_ice_ooborsf_pd_inborsf_pd_neworsf_pd_ooborsf_scale_cphorsf_summarize_uniorsf_time_to_trainorsf_trainorsf_unscale_cphorsf_updateorsf_viorsf_vi_anovaorsf_vi_negateorsf_vi_permuteorsf_vintorsf_vspred_spec_auto
Dependencies:clicollapsedata.tablegluelifecycleR6RcppRcppArmadillorlang
Introduction to aorsf
Rendered fromaorsf.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-01-23
Started: 2022-08-23
Out-of-bag predictions and evaluation
Rendered fromoobag.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-01-23
Started: 2022-08-23
PD and ICE curves with ORSF
Rendered frompd.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-01-23
Started: 2022-08-23
Tips to speed up computation
Rendered fromfast.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-01-23
Started: 2023-10-13