Package: anMC 0.2.5
anMC: Compute High Dimensional Orthant Probabilities
Computationally efficient method to estimate orthant probabilities of high-dimensional Gaussian vectors. Further implements a function to compute conservative estimates of excursion sets under Gaussian random field priors.
Authors:
anMC_0.2.5.tar.gz
anMC_0.2.5.tar.gz(r-4.5-noble)anMC_0.2.5.tar.gz(r-4.4-noble)
anMC_0.2.5.tgz(r-4.4-emscripten)anMC_0.2.5.tgz(r-4.3-emscripten)
anMC.pdf |anMC.html✨
anMC/json (API)
NEWS
# Install 'anMC' in R: |
install.packages('anMC', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:a4f7e6057b. Checks:1 OK, 2 NOTE. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 14 2025 |
R-4.5-linux-x86_64 | NOTE | Mar 14 2025 |
R-4.4-linux-x86_64 | NOTE | Mar 14 2025 |
Exports:ANMC_GaussconservativeEstimateget_chronotimeMC_GaussmvrnormArmaProbaMaxProbaMinselectActiveDimsselectQdimstrmvrnorm_rej_cpp
Dependencies:mvtnormRcppRcppArmadillo
Citation
To cite package ‘anMC’ in publications use:
Azzimonti D (2023). anMC: Compute High Dimensional Orthant Probabilities. R package version 0.2.5, https://CRAN.R-project.org/package=anMC.
Corresponding BibTeX entry:
@Manual{, title = {anMC: Compute High Dimensional Orthant Probabilities}, author = {Dario Azzimonti}, year = {2023}, note = {R package version 0.2.5}, url = {https://CRAN.R-project.org/package=anMC}, }
Readme and manuals
anMC
anMC
is a R package to efficiently compute orthant probabilities of
high-dimensional Gaussian vectors. The method is applied to compute
conservative estimates of excursion sets of functions under Gaussian
random field priors. This is an upgrade on the previously existent
package
ConservativeEstimates.
See the paper Azzimonti, D. and Ginsbourger D.
(2018) for more details.
Features
The package main functions are:
-
ProbaMax
: the main function for high dimensional othant probabilities. Computes P(max X > t), where X is a Gaussian vector and t is the selected threshold. The function computes the probability with the decomposition explained here. It implements both theGMC
andGANMC
algorithms. It allows user-defined functions for the core probability estimate (defaults topmvnorm
of the packagemvtnorm
) and the truncated normal sampler (defaults totrmvrnorm_rej_cpp
) required in the method. -
ProbaMin
: analogous ofProbaMax
but used to compute P(min X < t), where X is a Gaussian vector and t is the selected threshold. This function computes the probability with the decomposition explained here. It implements both theGMC
andGANMC
algorithms. -
conservativeEstimate
: the main function for conservative estimates computation. Requires the mean and covariance of the posterior field at a discretization design.
Installation
To install the latest version of the package run the following code from a R console:
if (!require("devtools"))
install.packages("devtools")
devtools::install_github("dazzimonti/anMC")
References
Azzimonti, D. and Ginsbourger, D. (2018). Estimating orthant probabilities of high dimensional Gaussian vectors with an application to set estimation. Journal of Computational and Graphical Statistics, 27(2), 255-267. DOI: 10.1080/10618600.2017.1360781. Preprint at hal-01289126
Azzimonti, D. (2016). Contributions to Bayesian set estimation relying on random field priors. PhD thesis, University of Bern. Available at link
Help Manual
Help page | Topics |
---|---|
ANMC estimate for the remainder | ANMC_Gauss |
Computationally efficient conservative estimate | conservativeEstimate |
Measure elapsed time with C++11 chrono library | get_chronotime |
MC estimate for the remainder | MC_Gauss |
Sample from multivariate normal distribution with C++ | mvrnormArma |
Probability of exceedance of maximum of Gaussian vector | ProbaMax |
Probability of exceedance of minimum of Gaussian vector | ProbaMin |
Select active dimensions for small dimensional estimate | selectActiveDims |
Iteratively select active dimensions | selectQdims |
Sample from truncated multivariate normal distribution with C++ | trmvrnorm_rej_cpp |