Package: amadeus 1.2.3

Kyle Messier

amadeus: Accessing and Analyzing Large-Scale Environmental Data

Functions are designed to facilitate access to and utility with large scale, publicly available environmental data in R. The package contains functions for downloading raw data files from web URLs (download_data()), processing the raw data files into clean spatial objects (process_covariates()), and extracting values from the spatial data objects at point and polygon locations (calculate_covariates()). These functions call a series of source-specific functions which are tailored to each data sources/datasets particular URL structure, data format, and spatial/temporal resolution. The functions are tested, versioned, and open source and open access. For sum_edc() method details, see Messier, Akita, and Serre (2012) <doi:10.1021/es203152a>.

Authors:Mitchell Manware [aut, ctb], Insang Song [aut, ctb], Eva Marques [aut, ctb], Mariana Alifa Kassien [aut, ctb], Elizabeth Scholl [ctb], Kyle Messier [aut, cre], Spatiotemporal Exposures and Toxicology Group [cph]

amadeus_1.2.3.tar.gz
amadeus_1.2.3.tar.gz(r-4.5-noble)amadeus_1.2.3.tar.gz(r-4.4-noble)
amadeus_1.2.3.tgz(r-4.4-emscripten)amadeus_1.2.3.tgz(r-4.3-emscripten)
amadeus.pdf |amadeus.html
amadeus/json (API)
NEWS

# Install 'amadeus' in R:
install.packages('amadeus', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/niehs/amadeus/issues15 issues

Pkgdown site:https://niehs.github.io

On CRAN:

Conda:

3.95 score 464 downloads 120 exports 106 dependencies

Last updated 2 months agofrom:3437f2420f. Checks:2 OK, 1 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 18 2025
R-4.5-linuxNOTEMar 18 2025
R-4.4-linuxOKMar 18 2025

Exports:apply_extentas_mysftimecalc_check_timecalc_messagecalc_prepare_locscalc_return_locscalc_setcolumnscalc_timecalc_workercalculate_covariatescalculate_ecoregioncalculate_geoscalculate_gmtedcalculate_gridmetcalculate_groadscalculate_hmscalculate_koppen_geigercalculate_laggedcalculate_merra2calculate_modiscalculate_modis_dailycalculate_narrcalculate_neicalculate_nlcdcalculate_populationcalculate_temporal_dummiescalculate_terraclimatecalculate_tricheck_destfilecheck_for_null_parameterscheck_geomcheck_mysfcheck_mysftimecheck_url_statuscheck_urlsdownload_aqsdownload_cropscapedownload_datadownload_ecoregiondownload_epa_certificatedownload_geosdownload_gmteddownload_gridmetdownload_groadsdownload_hashdownload_hmsdownload_hucdownload_koppen_geigerdownload_merra2download_modisdownload_narrdownload_neidownload_nlcddownload_permitdownload_populationdownload_prismdownload_remove_commanddownload_remove_zipsdownload_rundownload_sanitize_pathdownload_setup_dirdownload_sinkdownload_terraclimatedownload_tridownload_unzipdt_as_mysftimeextract_urlsgenerate_date_sequencegenerate_time_sequenceis_date_propernarr_variableprocess_aqsprocess_blackmarbleprocess_blackmarble_cornersprocess_collectionprocess_conformityprocess_covariatesprocess_cropscapeprocess_ecoregionprocess_flatten_sdsprocess_geosprocess_gmtedprocess_gmted_codesprocess_gridmetprocess_gridmet_codesprocess_groadsprocess_hmsprocess_hucprocess_koppen_geigerprocess_locs_radiusprocess_locs_vectorprocess_merra2process_merra2_timeprocess_modis_mergeprocess_modis_sdsprocess_modis_swathprocess_modis_warpprocess_narrprocess_neiprocess_nlcdprocess_populationprocess_prismprocess_sedac_codesprocess_terraclimateprocess_terraclimate_codesprocess_triprocess_variable_codesread_commandsrename_timesf_as_mysftimesftime_as_mysftimesftime_as_sfsftime_as_spatrastersftime_as_spatrdssftime_as_spatvectorspatraster_as_sftimespatrds_as_sftimespatvector_as_sftimesum_edctest_download_functions

Dependencies:abindarchivearrowaskpassassertthatbitbit64briocachemcallrclassclassIntclicliprcollapsecpp11crayoncurldata.tabledataRetrievalDBIdescdiffobjdigestdplyre1071evaluateexactextractrfansifastmapfsfstfstcoregenericsgluehmshttrhttr2hydroloomjsonliteKernSmoothlatticelifecyclelubridatemagrittrmaplegendmapsfmaptilesMASSmemoisemimenhdplusToolsopensslpbapplypillarpkgbuildpkgconfigpkgloadpngpraiseprettyunitsprocessxprogressproxypspurrrR.methodsS3R.ooR.utilsR6RANNrappdirsrasterrbibutilsRcppRdpackreadrrlangrprojrootrvests2selectrsfsftimeslippymathspstarsstringistringrsysterratestthattibbletidyrtidyselecttimechangetzdbunitsutf8vctrsvroomwaldowithrwkxml2zip

Climatology Lab gridMET

Rendered fromgridmet_workflow.Rmdusingknitr::rmarkdownon Mar 18 2025.

Last update: 2025-01-08
Started: 2025-01-08

Climatology Lab TerraClimate

Rendered fromterraclimate_workflow.Rmdusingknitr::rmarkdownon Mar 18 2025.

Last update: 2025-01-08
Started: 2025-01-08

North American Regional Reanalysis (NARR)

Rendered fromnarr_workflow.Rmdusingknitr::rmarkdownon Mar 18 2025.

Last update: 2025-01-08
Started: 2025-01-08

Citation

To cite package ‘amadeus’ in publications use:

Manware M, Song I, Marques E, Alifa Kassien M, Messier K (2025). amadeus: Accessing and Analyzing Large-Scale Environmental Data. R package version 1.2.3, https://CRAN.R-project.org/package=amadeus.

Corresponding BibTeX entry:

  @Manual{,
    title = {amadeus: Accessing and Analyzing Large-Scale Environmental
      Data},
    author = {Mitchell Manware and Insang Song and Eva Marques and
      Mariana {Alifa Kassien} and Kyle Messier},
    year = {2025},
    note = {R package version 1.2.3},
    url = {https://CRAN.R-project.org/package=amadeus},
  }

Readme and manuals

amadeus amadeus website

amadeus is a mechanism for data, environments, and user setup for common environmental and climate health datasets in R. amadeus has been developed to improve access to and utility with large scale, publicly available environmental data in R.

Installation

amadeus can be installed from CRAN, or with pak.

install.packages("amadeus")
pak::pak("NIEHS/amadeus")

Download

download_data accesses and downloads raw geospatial data from a variety of open source data repositories. The function is a wrapper that calls source-specific download functions, each of which account for the source's unique combination of URL, file naming conventions, and data types. Download functions cover the following sources:

Data Source File Type Data Genre Spatial Extent
Climatology Lab TerraClimate netCDF Meteorology Global
Climatology Lab GridMet netCDF Climate
Water
Contiguous United States
Köppen-Geiger Climate Classification GeoTIFF Climate Classification Global
MRLC[^1] Consortium National Land Cover Database (NLCD) GeoTIFF Land Use United States
NASA[^2] Moderate Resolution Imaging Spectroradiometer (MODIS) HDF Atmosphere
Meteorology
Land Use
Satellite
Global
NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) netCDF Atmosphere
Meteorology
Global
NASA SEDAC[^3] UN WPP-Adjusted Population Density GeoTIFF
netCDF
Population Global
NASA SEDAC Global Roads Open Access Data Set Shapefile
Geodatabase
Roadways Global
NASA Goddard Earth Observing System Composition Forcasting (GEOS-CF) netCDF Atmosphere
Meteorology
Global
NOAA Hazard Mapping System Fire and Smoke Product Shapefile
KML
Wildfire Smoke North America
NOAA NCEP[^4] North American Regional Reanalysis (NARR) netCDF Atmosphere
Meteorology
North America
OpenGeoHub Foundation OpenLandMap GeoTIFF Climate
Elevation
Soil
Land Use
Satellite
Global
Parameter Elevation Regression on Independent Slopes Model (PRISM) BIL
ASCII
Climate United States
US EPA[^5] Air Data Pre-Generated Data Files CSV Air Pollution United States
US EPA Ecoregions Shapefile Climate Regions North America
US EPA National Emissions Inventory (NEI) CSV Emissions United States
US EPA Toxic Release Inventory (TRI) Program CSV Chemicals
Pollution
United States
USGS[^6] Global Multi-resolution Terrain Elevation Data (GMTED2010) ESRI ASCII Grid Elevation Global
USGS National Hydrography Dataset (NHD) Geopackage
Geodatabase
Hydrography United States

See the "download_data" vignette for a detailed description of source-specific download functions.

Example use of download_data using NOAA NCEP North American Regional Reanalysis's (NARR) "weasd" (Daily Accumulated Snow at Surface) variable.

directory <- "/  EXAMPLE  /  FILE  /  PATH  /"
download_data(
  dataset_name = "narr",
  year = 2022,
  variable = "weasd",
  directory_to_save = directory,
  acknowledgement = TRUE,
  download = TRUE,
  hash = TRUE
)
Downloading requested files...
Requested files have been downloaded.
[1] "5655d4281b76f4d4d5bee234c2938f720cfec879"
list.files(file.path(directory, "weasd"))
[1] "weasd.2022.nc"

Process

process_covariates imports and cleans raw geospatial data (downloaded with download_data), and returns a single SpatRaster or SpatVector into the user's R environment. process_covariates "cleans" the data by defining interpretable layer names, ensuring a coordinate reference system is present, and managing `timedata (if applicable).

To avoid errors when using process_covariates, do not edit the raw downloaded data files. Passing user-generated or edited data into process_covariates may result in errors as the underlying functions are adapted to each sources' raw data file type.

Example use of process_covariates using the downloaded "weasd" data.

weasd_process <- process_covariates(
  covariate = "narr",
  date = c("2022-01-01", "2022-01-05"),
  variable = "weasd",
  path = file.path(directory, "weasd"),
  extent = NULL
)
Detected monolevel data...
Cleaning weasd data for 2022...
Returning daily weasd data from 2022-01-01 to 2022-01-05.
weasd_process
class       : SpatRaster
dimensions  : 277, 349, 5  (nrow, ncol, nlyr)
resolution  : 32462.99, 32463  (x, y)
extent      : -16231.49, 11313351, -16231.5, 8976020  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=lcc +lat_0=50 +lon_0=-107 +lat_1=50 +lat_2=50 +x_0=5632642.22547 +y_0=4612545.65137 +datum=WGS84 +units=m +no_defs
source      : weasd.2022.nc:weasd
varname     : weasd (Daily Accumulated Snow at Surface)
names       : weasd_20220101, weasd_20220102, weasd_20220103, weasd_20220104, weasd_20220105
unit        :         kg/m^2,         kg/m^2,         kg/m^2,         kg/m^2,         kg/m^2
time        : 2022-01-01 to 2022-01-05 UTC

Calculate Covariates

calculate_covariates stems from the beethoven project's need for various types of data extracted at precise locations. calculate_covariates, therefore, extracts data from the "cleaned" SpatRaster or SpatVector object at user defined locations. Users can choose to buffer the locations. The function returns a data.frame, sf, or SpatVector with data extracted at all locations for each layer or row in the SpatRaster or SpatVector object, respectively.

Example of calculate_covariates using processed "weasd" data.

locs <- data.frame(id = "001", lon = -78.8277, lat = 35.95013)
weasd_covar <- calculate_covariates(
  covariate = "narr",
  from = weasd_process,
  locs = locs,
  locs_id = "id",
  radius = 0,
  geom = "sf"
)
Detected `data.frame` extraction locations...
Calculating weasd covariates for 2022-01-01...
Calculating weasd covariates for 2022-01-02...
Calculating weasd covariates for 2022-01-03...
Calculating weasd covariates for 2022-01-04...
Calculating weasd covariates for 2022-01-05...
Returning extracted covariates.
weasd_covar
Simple feature collection with 5 features and 3 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 8184606 ymin: 3523283 xmax: 8184606 ymax: 3523283
Projected CRS: unnamed
   id       time     weasd_0                geometry
1 001 2022-01-01 0.000000000 POINT (8184606 3523283)
2 001 2022-01-02 0.000000000 POINT (8184606 3523283)
3 001 2022-01-03 0.000000000 POINT (8184606 3523283)
4 001 2022-01-04 0.000000000 POINT (8184606 3523283)
5 001 2022-01-05 0.001953125 POINT (8184606 3523283)

Climate and Health Outcomes Research Data Systems

The amadeus package has been developed as part of the National Institute of Environmental Health Science's (NIEHS) Climate and Health Outcomes Research Data Systems (CHORDS) program. CHORDS aims to "build and strengthen data infrastructure for patient-centered outcomes research on climate change and health" by providing curated data, analysis tools, and educational resources. Visit the CHORDS catalog at https://niehs.github.io/chords_landing/index.html.

Additional Resources

The following R packages can also be used to access climate and weather data in R, but each differs from amadeus in the data sources covered or type of functionality provided.

Package Source
dataRetrieval USGS Hydrological Data and EPA Water Quality Data
daymetr Daymet
ecmwfr ECMWF Reanalysis v5 (ERA5)
RClimChange[^7] NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)
rNOMADS NOAA Operational Model Archive and Distribution System
sen2r[^8] Sentinel-2

Contribution

To add or edit functionality for new data sources or datasets, open a Pull request into the main branch with a detailed description of the proposed changes. Pull requests must pass all status checks, and then will be approved or rejected by amadeus's authors.

Utilize Issues to notify the authors of bugs, questions, or recommendations. Identify each issue with the appropriate label to help ensure a timely response.

[^1]: Multi-Resolution Land Characteristics [^2]: National Aeronautics and Space Administration [^3]: Socioeconomic Data and Applications Center [^4]: National Centers for Environmental Prediction [^5]: United States Environmental Protection Agency [^6]: United States Geological Survey [^7]: Last updated more than two years ago. [^8]: Archived; no longer maintained.

Help Manual

Help pageTopics
Create an 'sftime' objectas_mysftime
Calculate covariates wrapper functioncalculate_covariates
Calculate ecoregions covariatescalculate_ecoregion
Calculate atmospheric composition covariatescalculate_geos
Calculate elevation covariatescalculate_gmted
Calculate gridMET covariatescalculate_gridmet
Calculate roads covariatescalculate_groads
Calculate wildfire smoke covariatescalculate_hms
Calculate climate classification covariatescalculate_koppen_geiger
Calculate temporally lagged covariatescalculate_lagged
Calculate meteorological and atmospheric covariatescalculate_merra2
Calculate MODIS product covariates in multiple CPU threadscalculate_modis
A single-date MODIS workercalculate_modis_daily
Calculate meteorological covariatescalculate_narr
Calculate road emissions covariatescalculate_nei
Calculate land cover covariatescalculate_nlcd
Calculate population density covariatescalculate_population
Calculate temporal dummy covariatescalculate_temporal_dummies
Calculate TerraClimate covariatescalculate_terraclimate
Calculate toxic release covariatescalculate_tri
Download air quality datadownload_aqs
Download CropScape datadownload_cropscape
Download raw data wrapper functiondownload_data
Download ecoregion datadownload_ecoregion
Download atmospheric composition datadownload_geos
Download elevation datadownload_gmted
Download gridMET datadownload_gridmet
Download roads datadownload_groads
Download wildfire smoke datadownload_hms
Download National Hydrography Dataset (NHD) datadownload_huc
Download climate classification datadownload_koppen_geiger
Download meteorological and atmospheric datadownload_merra2
Download MODIS product filesdownload_modis
Download meteorological datadownload_narr
Download road emissions datadownload_nei
Download land cover datadownload_nlcd
Download population density datadownload_population
Download PRISM datadownload_prism
Download TerraClimate datadownload_terraclimate
Download toxic release datadownload_tri
Convert a 'data.table' to an 'sftime'dt_as_mysftime
Process U.S. EPA AQS daily CSV dataprocess_aqs
Assign VIIRS Black Marble products corner coordinates to retrieve a merged rasterprocess_blackmarble
Process Black Marble cornersprocess_blackmarble_corners
Process raw data wrapper functionprocess_covariates
Process CropScape dataprocess_cropscape
Process ecoregion dataprocess_ecoregion
Process MODIS layersprocess_flatten_sds
Process atmospheric composition dataprocess_geos
Process elevation dataprocess_gmted
Process gridMET dataprocess_gridmet
Process roads dataprocess_groads
Process wildfire smoke dataprocess_hms
Retrieve Hydrologic Unit Code (HUC) dataprocess_huc
Process climate classification dataprocess_koppen_geiger
Process meteorological and atmospheric dataprocess_merra2
Process MODIS .hdf filesprocess_modis_merge
Process MODIS sub-datasetsprocess_modis_sds
Mosaic MODIS swathsprocess_modis_swath
Warp MODIS swath data into rectilinear grid rasterprocess_modis_warp
Process meteorological dataprocess_narr
Process road emissions dataprocess_nei
Process land cover dataprocess_nlcd
Process population density dataprocess_population
Process PRISM dataprocess_prism
Process TerraClimate dataprocess_terraclimate
Process toxic release dataprocess_tri
Convert an 'sf' to an 'sftime'sf_as_mysftime
Convert an 'sftime' to a 'mysftime'sftime_as_mysftime
Convert an 'sftime' to an 'sf'sftime_as_sf
Convert an 'sftime' to a 'SpatRaster'sftime_as_spatraster
Convert an 'sftime' to a 'SpatRasterDataset'sftime_as_spatrds
Convert an 'sftime' to a 'SpatVector'sftime_as_spatvector
Convert a 'SpatRaster' to an 'sftime'spatraster_as_sftime
Convert a 'SpatRasterDataset' to an 'sftime'spatrds_as_sftime
Convert a 'SpatVector' to an 'sftime'spatvector_as_sftime
Calculate isotropic Sum of Exponentially Decaying Contributions (SEDC) covariatessum_edc