Package: alqrfe 1.1

Ian Meneghel Danilevicz

alqrfe: Adaptive Lasso Quantile Regression with Fixed Effects

Quantile regression with fixed effects solves longitudinal data, considering the individual intercepts as fixed effects. The parametric set of this type of problem used to be huge. Thus penalized methods such as Lasso are currently applied. Adaptive Lasso presents oracle proprieties, which include Gaussianity and correct model selection. Bayesian information criteria (BIC) estimates the optimal tuning parameter lambda. Plot tools are also available.

Authors:Ian Meneghel Danilevicz [aut, cre], Pascal Bondon [aut], Valderio A. Reisen [aut]

alqrfe_1.1.tar.gz
alqrfe_1.1.tar.gz(r-4.5-noble)alqrfe_1.1.tar.gz(r-4.4-noble)
alqrfe_1.1.tgz(r-4.4-emscripten)alqrfe_1.1.tgz(r-4.3-emscripten)
alqrfe.pdf |alqrfe.html
alqrfe/json (API)

# Install 'alqrfe' in R:
install.packages('alqrfe', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

1.00 score 295 downloads 23 exports 3 dependencies

Last updated 2 years agofrom:442be00a9b. Checks:1 OK, 1 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 26 2025
R-4.5-linux-x86_64NOTEJan 26 2025

Exports:bic_hatclean_datadf_hatf_denf_tabloss_alqrloss_lqrloss_qrloss_qrfemake_zmqrmqr_alphaoptim_alqroptim_lqroptim_qroptim_qrfeplot_alphaplot_tausprint.ALQRFEq_covqrrho_koenkersgf

Dependencies:MASSRcppRcppArmadillo