Package: acepack 1.4.2

Shawn Garbett

acepack: ACE and AVAS for Selecting Multiple Regression Transformations

Two nonparametric methods for multiple regression transform selection are provided. The first, Alternative Conditional Expectations (ACE), is an algorithm to find the fixed point of maximal correlation, i.e. it finds a set of transformed response variables that maximizes R^2 using smoothing functions [see Breiman, L., and J.H. Friedman. 1985. "Estimating Optimal Transformations for Multiple Regression and Correlation". Journal of the American Statistical Association. 80:580-598. <doi:10.1080/01621459.1985.10478157>]. Also included is the Additivity Variance Stabilization (AVAS) method which works better than ACE when correlation is low [see Tibshirani, R.. 1986. "Estimating Transformations for Regression via Additivity and Variance Stabilization". Journal of the American Statistical Association. 83:394-405. <doi:10.1080/01621459.1988.10478610>]. A good introduction to these two methods is in chapter 16 of Frank Harrel's "Regression Modeling Strategies" in the Springer Series in Statistics.

Authors:Phil Spector, Jerome Friedman, Robert Tibshirani, Thomas Lumley, Shawn Garbett, Jonathan Baron

acepack_1.4.2.tar.gz
acepack_1.4.2.tar.gz(r-4.5-noble)acepack_1.4.2.tar.gz(r-4.4-noble)
acepack_1.4.2.tgz(r-4.4-emscripten)acepack_1.4.2.tgz(r-4.3-emscripten)
acepack.pdf |acepack.html
acepack/json (API)
NEWS

# Install 'acepack' in R:
install.packages('acepack', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.66 score 3 packages 52 scripts 4.9k downloads 2 mentions 2 exports 0 dependencies

Last updated 1 years agofrom:b5651932ef. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 15 2024
R-4.5-linux-x86_64OKOct 15 2024

Exports:aceavas

Dependencies: