Package: VarSelLCM 2.1.3.1
VarSelLCM: Variable Selection for Model-Based Clustering of Mixed-Type Data Set with Missing Values
Full model selection (detection of the relevant features and estimation of the number of clusters) for model-based clustering (see reference here <doi:10.1007/s11222-016-9670-1>). Data to analyze can be continuous, categorical, integer or mixed. Moreover, missing values can occur and do not necessitate any pre-processing. Shiny application permits an easy interpretation of the results.
Authors:
VarSelLCM_2.1.3.1.tar.gz
VarSelLCM_2.1.3.1.tar.gz(r-4.5-noble)VarSelLCM_2.1.3.1.tar.gz(r-4.4-noble)
VarSelLCM_2.1.3.1.tgz(r-4.4-emscripten)VarSelLCM_2.1.3.1.tgz(r-4.3-emscripten)
VarSelLCM.pdf |VarSelLCM.html✨
VarSelLCM/json (API)
NEWS
# Install 'VarSelLCM' in R: |
install.packages('VarSelLCM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://r-forge.r-project.org/projects/varsellcm
- heart - Statlog (Heart) Data Set
Last updated 4 years agofrom:0b5096967d. Checks:OK: 1 WARNING: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 20 2024 |
Exports:AICARIBICcoefcoefficientsfittedfitted.valuesICLMICLplotpredictprintsummaryVarSelClusterVarSelImputationVarSelShiny
Dependencies:base64encbslibcachemclicolorspacecommonmarkcrayondigestfansifarverfastmapfontawesomefsggplot2gluegtablehtmltoolshttpuvisobandjquerylibjsonlitelabelinglaterlatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigpromisesR6rappdirsRColorBrewerRcppRcppArmadillorlangsassscalesshinysourcetoolstibbleutf8vctrsviridisLitewithrxtable