Package: TSLA 0.1.2

Jianmin Chen

TSLA: Tree-Guided Rare Feature Selection and Logic Aggregation

Implementation of the tree-guided feature selection and logic aggregation approach introduced in Chen et al. (2024) <doi:10.1080/01621459.2024.2326621>. The method enables the selection and aggregation of large-scale rare binary features with a known hierarchical structure using a convex, linearly-constrained regularized regression framework. The package facilitates the application of this method to both linear regression and binary classification problems by solving the optimization problem via the smoothing proximal gradient descent algorithm (Chen et al. (2012) <doi:10.1214/11-AOAS514>).

Authors:Jianmin Chen [aut, cre], Kun Chen [aut]

TSLA_0.1.2.tar.gz
TSLA_0.1.2.tar.gz(r-4.5-noble)TSLA_0.1.2.tar.gz(r-4.4-noble)
TSLA_0.1.2.tgz(r-4.4-emscripten)TSLA_0.1.2.tgz(r-4.3-emscripten)
TSLA.pdf |TSLA.html
TSLA/json (API)

# Install 'TSLA' in R:
install.packages('TSLA', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

1.30 score 153 downloads 11 exports 42 dependencies

Last updated 7 days agofrom:58c26c44fd. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 17 2025
R-4.5-linux-x86_64OKMar 17 2025
R-4.4-linux-x86_64OKMar 17 2025

Exports:cal2normcoef_TSLAcv.TSLAget_tree_objectgetaggrgetetmatgetperformplot_TSLApredict_cvTSLApredict_TSLATSLA.fit

Dependencies:apecliclusterGenerationcodacodetoolscombinatcpp11data.treeDEoptimdigestdoParallelexpmfastmatchforeachgenericsglueigraphiteratorslatticelifecyclemagrittrmapsMASSMatrixmnormtnlmenumDerivoptimParallelphangornphytoolspkgconfigplyrpROCPRROCquadprogR6RcppRcppArmadillorlangscatterplot3dstringivctrs