Package: SpatMCA 1.0.4

Wen-Ting Wang

SpatMCA: Regularized Spatial Maximum Covariance Analysis

Provide regularized maximum covariance analysis incorporating smoothness, sparseness and orthogonality of couple patterns by using the alternating direction method of multipliers algorithm. The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D (Wang and Huang, 2017 <doi:10.1002/env.2481>).

Authors:Wen-Ting Wang [aut, cre], Hsin-Cheng Huang [aut]

SpatMCA_1.0.4.tar.gz
SpatMCA_1.0.4.tar.gz(r-4.5-noble)SpatMCA_1.0.4.tar.gz(r-4.4-noble)
SpatMCA_1.0.4.tgz(r-4.4-emscripten)SpatMCA_1.0.4.tgz(r-4.3-emscripten)
SpatMCA.pdf |SpatMCA.html
SpatMCA/json (API)
NEWS

# Install 'SpatMCA' in R:
install.packages('SpatMCA', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/egpivo/spatmca/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

1.00 score 4 scripts 219 downloads 10 exports 31 dependencies

Last updated 1 years agofrom:f728f564c5. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-linux-x86_64OKNov 16 2024

Exports:checkInputDatadetrendplot_cv_fieldplot_sequentiallyplot.spatmcasetCoresspatmcaspatmcacv_rcppspatmcacvall_rcpptpm2

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerRcppRcppArmadilloRcppParallelrlangscalestibbleutf8vctrsviridisLitewithr