Package: SparseTSCGM 4.0
Fentaw Abegaz
SparseTSCGM: Sparse Time Series Chain Graphical Models
Computes sparse vector autoregressive coefficients and precision matrices for time series chain graphical models. Fentaw Abegaz and Ernst Wit (2013) <doi:10.1093/biostatistics/kxt005>.
Authors:
SparseTSCGM_4.0.tar.gz
SparseTSCGM_4.0.tar.gz(r-4.5-noble)SparseTSCGM_4.0.tar.gz(r-4.4-noble)
SparseTSCGM_4.0.tgz(r-4.4-emscripten)SparseTSCGM_4.0.tgz(r-4.3-emscripten)
SparseTSCGM.pdf |SparseTSCGM.html✨
SparseTSCGM/json (API)
# Install 'SparseTSCGM' in R: |
install.packages('SparseTSCGM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- mammary - Microarray gene expression time course data for mammary gland development in mice
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:2320b4d53e. Checks:OK: 1 NOTE: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 07 2024 |
Exports:plot.tscgmplot.tscgm.ar2print.tscgmsim.datasparse.tscgmsummary.tscgm
Dependencies:abindclicodacorpcorcpp11fansiglassogluehugeigraphlatticelifecyclelongitudinalmagrittrMASSMatrixmvtnormnetworkpillarpkgconfigRcppRcppEigenrlangstatnet.commontibbleutf8vctrs