Package: SparseDC 0.1.17
Jun Li
SparseDC: Implementation of SparseDC Algorithm
Implements the algorithm described in Barron, M., Zhang, S. and Li, J. 2017, "A sparse differential clustering algorithm for tracing cell type changes via single-cell RNA-sequencing data", Nucleic Acids Research, gkx1113, <doi:10.1093/nar/gkx1113>. This algorithm clusters samples from two different populations, links the clusters across the conditions and identifies marker genes for these changes. The package was designed for scRNA-Seq data but is also applicable to many other data types, just replace cells with samples and genes with variables. The package also contains functions for estimating the parameters for SparseDC as outlined in the paper. We recommend that users further select their marker genes using the magnitude of the cluster centers.
Authors:
SparseDC_0.1.17.tar.gz
SparseDC_0.1.17.tar.gz(r-4.5-noble)SparseDC_0.1.17.tar.gz(r-4.4-noble)
SparseDC_0.1.17.tgz(r-4.4-emscripten)SparseDC_0.1.17.tgz(r-4.3-emscripten)
SparseDC.pdf |SparseDC.html✨
SparseDC/json (API)
# Install 'SparseDC' in R: |
install.packages('SparseDC', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- cell_type_biase - Biase Data Cell Type
- condition_biase - Biase Data Conditions
- data_biase - Biase Data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 7 years agofrom:1926132624. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-linux | OK | Nov 08 2024 |
Exports:generate_uni_datlambda1_calculatorlambda2_calculatorpre_proc_dataS_funcsim_datasparsedc_clustersparsedc_gapupdate_cupdate_mu
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Biase Data Cell Type | cell_type_biase |
Biase Data Conditions | condition_biase |
Biase Data | data_biase |
Uniform data generator For use with the gap statistic. Generates datasets drawn from the reference distribution where each reference feature is generated uniformly over the range of observed values for that feature. | generate_uni_dat |
Lambda 1 Calculator. | lambda1_calculator |
Lambda 2 Calculator. | lambda2_calculator |
Pre-process Data | pre_proc_data |
The soft thresholding operator | S_func |
Data Simulator | sim_data |
Sparse Differential Clustering | sparsedc_cluster |
Gap Statistic Calculator | sparsedc_gap |
Update Clusters | update_c |
Update the Center Values | update_mu |