Package: SVMMaj 0.2.9.3

Hoksan Yip

SVMMaj: Implementation of the SVM-Maj Algorithm

Implements the SVM-Maj algorithm to train data with support vector machine <doi:10.1007/s11634-008-0020-9>. This algorithm uses two efficient updates, one for linear kernel and one for the nonlinear kernel.

Authors:Hoksan Yip [aut, cre], Patrick J.F. Groenen [aut], Georgi Nalbantov [aut]

SVMMaj_0.2.9.3.tar.gz
SVMMaj_0.2.9.3.tar.gz(r-4.5-noble)SVMMaj_0.2.9.3.tar.gz(r-4.4-noble)
SVMMaj_0.2.9.3.tgz(r-4.4-emscripten)SVMMaj_0.2.9.3.tgz(r-4.3-emscripten)
SVMMaj.pdf |SVMMaj.html
SVMMaj/json (API)

# Install 'SVMMaj' in R:
install.packages('SVMMaj', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.36 score 1 stars 23 scripts 221 downloads 9 exports 38 dependencies

Last updated 3 days agofrom:54342280e7. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-linuxOKNov 23 2024

Exports:aucclassificationgetHingeisbnormalizeplotWeightsroccurvesvmmajsvmmajcrossval

Dependencies:clicolorspacedplyrfansifarvergenericsggplot2gluegridExtragtableisobandkernlablabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppreshape2rlangscalesstringistringrtibbletidyselectutf8vctrsviridisLitewithr

paper

Rendered frompaper.Rnwusingutils::Sweaveon Nov 23 2024.

Last update: 2024-11-22
Started: 2018-02-25