Package: SSOSVM 0.2.1
SSOSVM: Stream Suitable Online Support Vector Machines
Soft-margin support vector machines (SVMs) are a common class of classification models. The training of SVMs usually requires that the data be available all at once in a single batch, however the Stochastic majorization-minimization (SMM) algorithm framework allows for the training of SVMs on streamed data instead Nguyen, Jones & McLachlan(2018)<doi:10.1007/s42081-018-0001-y>. This package utilizes the SMM framework to provide functions for training SVMs with hinge loss, squared-hinge loss, and logistic loss.
Authors:
SSOSVM_0.2.1.tar.gz
SSOSVM_0.2.1.tar.gz(r-4.5-noble)SSOSVM_0.2.1.tar.gz(r-4.4-noble)
SSOSVM_0.2.1.tgz(r-4.4-emscripten)SSOSVM_0.2.1.tgz(r-4.3-emscripten)
SSOSVM.pdf |SSOSVM.html✨
SSOSVM/json (API)
# Install 'SSOSVM' in R: |
install.packages('SSOSVM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:557d8d4302. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 20 2024 |
Exports:generateSimHingeLogisticSquareHingeSVMFit
Dependencies:MASSmvtnormRcppRcppArmadillo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Generate Simulations | generateSim |
Hinge | Hinge |
Logistic Loss Function | Logistic |
Square Hinge | SquareHinge |
SSOSVM: A package for online training of soft-margin support vector machines (SVMs) using the Stochastic majorization–minimization (SMM) algorithm. | SSOSVM-package SSOSVM |
SSOSVM Fit function | SVMFit |