Package: SBMTrees 1.2

Jungang Zou

SBMTrees: Sequential Imputation with Bayesian Trees Mixed-Effects Models for Longitudinal Data

Implements a sequential imputation framework using Bayesian Mixed-Effects Trees ('SBMTrees') for handling missing data in longitudinal studies. The package supports a variety of models, including non-linear relationships and non-normal random effects and residuals, leveraging Dirichlet Process priors for increased flexibility. Key features include handling Missing at Random (MAR) longitudinal data, imputation of both covariates and outcomes, and generating posterior predictive samples for further analysis. The methodology is designed for applications in epidemiology, biostatistics, and other fields requiring robust handling of missing data in longitudinal settings.

Authors:Jungang Zou [aut, cre], Liangyuan Hu [aut], Robert McCulloch [ctb], Rodney Sparapani [ctb], Charles Spanbauer [ctb]

SBMTrees_1.2.tar.gz
SBMTrees_1.2.tar.gz(r-4.5-noble)SBMTrees_1.2.tar.gz(r-4.4-noble)
SBMTrees_1.2.tgz(r-4.4-emscripten)SBMTrees_1.2.tgz(r-4.3-emscripten)
SBMTrees.pdf |SBMTrees.html
SBMTrees/json (API)
NEWS

# Install 'SBMTrees' in R:
install.packages('SBMTrees', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

2.70 score 156 downloads 5 exports 75 dependencies

Last updated 3 months agofrom:2b53ef8eee. Checks:2 OK, 1 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 11 2025
R-4.5-linux-x86_64OKMar 11 2025
R-4.4-linux-x86_64NOTEMar 11 2025

Exports:apply_locf_nocbBMTrees_predictionsequential_imputationsimulation_imputationsimulation_prediction

Dependencies:abindarmbackportsbitbit64bootbroomclicliprcodacodetoolscpp11crayondplyrfansiforcatsforeachgenericsglmnetgluehavenhmsiteratorsjomolatticelifecyclelme4magrittrMASSMatrixMatrixModelsmiceminqamitmlmnormtmvtnormnlmenloptrnnetnumDerivordinalpanpillarpkgconfigprettyunitsprogresspurrrquantregR6rbibutilsRcppRcppArmadilloRcppDistRcppEigenRcppProgressRdpackreadrreformulasrlangrpartshapesnSparseMstringistringrsurvivaltibbletidyrtidyselecttzdbucminfutf8vctrsvroomwithr

SBMTrees: Introduction and Usage

Rendered fromSBMTrees_Introduction.Rmdusingknitr::rmarkdownon Mar 11 2025.

Last update: 2024-12-11
Started: 2024-12-09