Package: SAGMM 0.2.4

Andrew T. Jones

SAGMM: Clustering via Stochastic Approximation and Gaussian Mixture Models

Computes clustering by fitting Gaussian mixture models (GMM) via stochastic approximation following the methods of Nguyen and Jones (2018) <doi:10.1201/9780429446177>. It also provides some test data generation and plotting functionality to assist with this process.

Authors:Andrew T. Jones, Hien D. Nguyen

SAGMM_0.2.4.tar.gz
SAGMM_0.2.4.tar.gz(r-4.5-noble)SAGMM_0.2.4.tar.gz(r-4.4-noble)
SAGMM_0.2.4.tgz(r-4.4-emscripten)SAGMM_0.2.4.tgz(r-4.3-emscripten)
SAGMM.pdf |SAGMM.html
SAGMM/json (API)
NEWS

# Install 'SAGMM' in R:
install.packages('SAGMM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

1.00 score 3 scripts 104 downloads 1 mentions 3 exports 6 dependencies

Last updated 6 years agofrom:698d3e53c3. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 14 2024
R-4.5-linux-x86_64NOTEDec 14 2024

Exports:gainFactorsgenerateSimDataSAGMMFit

Dependencies:lowmemtkmeansMASSmclustMixSimRcppRcppArmadillo