Package: RprobitB 1.1.4

Lennart Oelschläger

RprobitB: Bayesian Probit Choice Modeling

Bayes estimation of probit choice models, both in the cross-sectional and panel setting. The package can analyze binary, multivariate, ordered, and ranked choices, as well as heterogeneity of choice behavior among deciders. The main functionality includes model fitting via Markov chain Monte Carlo m ethods, tools for convergence diagnostic, choice data simulation, in-sample and out-of-sample choice prediction, and model selection using information criteria and Bayes factors. The latent class model extension facilitates preference-based decider classification, where the number of latent classes can be inferred via the Dirichlet process or a weight-based updating heuristic. This allows for flexible modeling of choice behavior without the need to impose structural constraints. For a reference on the method see Oelschlaeger and Bauer (2021) <https://trid.trb.org/view/1759753>.

Authors:Lennart Oelschläger [aut, cre], Dietmar Bauer [aut], Sebastian Büscher [ctb], Manuel Batram [ctb]

RprobitB_1.1.4.tar.gz
RprobitB_1.1.4.tar.gz(r-4.5-noble)RprobitB_1.1.4.tar.gz(r-4.4-noble)
RprobitB_1.1.4.tgz(r-4.4-emscripten)RprobitB_1.1.4.tgz(r-4.3-emscripten)
RprobitB.pdf |RprobitB.html
RprobitB/json (API)
NEWS

# Install 'RprobitB' in R:
install.packages('RprobitB', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/loelschlaeger/rprobitb/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

3.85 score 1 scripts 362 downloads 41 exports 150 dependencies

Last updated 9 months agofrom:207d41e220. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-linux-x86_64OKNov 23 2024

Exports:as_cov_namescheck_priorchoice_probabilitiesclassificationcompute_p_sicov_mixcreate_lagged_covd_to_gammadmvnormeuc_distfit_modelget_covll_orderedmmlmodel_selectionnparoverview_effectsplot_rocpoint_estimatespred_accprepare_dataR_hatrdirichletrmvnormRprobitB_parameterrtnormrttnormrwishartsimulate_choicestrain_testupdate_bupdate_dupdate_mupdate_Omegaupdate_regupdate_supdate_Sigmaupdate_Uupdate_U_rankedupdate_zWAIC

Dependencies:askpassassertthatbackportsbase64encBBbenchmarkmebenchmarkmeDatabriobslibcachemcallrcheckmateclicliprcodetoolscolorspacecommonmarkcpp11crayoncredentialscrosstalkcurldata.tabledescdiffobjdigestdoParalleldoSNOWdplyrevaluatefansifarverfastmapfontawesomeforeachfsgenericsGenOrdgertggfunggimageggplot2ggplotifyghgitcredsglueGPArotationgridExtragridGraphicsgridSVGgtablehexbinhexStickerhighrhmshtmltoolshtmlwidgetshttpuvhttrhttr2iniisobanditeratorsjquerylibjsonlitekernlabknitrlabelinglaterlatex2explatticelazyevallifecyclemagickmagrittrMASSMatrixmemoisemgcvmimemixtoolsmnormtmunsellmvtnormnleqslvnlmeoeliopensslpillarpkgbuildpkgconfigpkgloadplotlyplotROCplyrpraiseprettyunitsprocessxprogresspromisespspsychpurrrquadprogR6rappdirsrbibutilsRColorBrewerRcppRcppArmadilloRdpackrlangrmarkdownrprojrootrstudioapisassscalessegmentedshinyshowtextshowtextdbSimMultiCorrDatasnowsourcetoolsstringistringrsurvivalsyssysfontstestthattibbletidyrtidyselecttinytextriangleusethisutf8vctrsVGAMviridisviridisLitewaldowhiskerwithrxfunXMLxtableyamlyulab.utilszip

Choice data

Rendered fromv02_choice_data.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-02-09
Started: 2022-07-22

Choice prediction

Rendered fromv05_choice_prediction.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-02-09
Started: 2022-07-22

Introduction

Rendered fromRprobitB.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-02-09
Started: 2022-07-22

Model definition

Rendered fromv01_model_definition.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-02-09
Started: 2022-07-22

Model fitting

Rendered fromv03_model_fitting.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-02-09
Started: 2022-07-22

Model selection

Rendered fromv06_model_selection.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-02-09
Started: 2022-07-22

Modeling heterogeneity

Rendered fromv04_modeling_heterogeneity.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-02-09
Started: 2022-07-22