Package: RoBMA 3.1.0
RoBMA: Robust Bayesian Meta-Analyses
A framework for estimating ensembles of meta-analytic models (assuming either presence or absence of the effect, heterogeneity, and publication bias). The RoBMA framework uses Bayesian model-averaging to combine the competing meta-analytic models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual components (e.g., effect vs. no effect; Bartoš et al., 2022, <doi:10.1002/jrsm.1594>; Maier, Bartoš & Wagenmakers, 2022, <doi:10.1037/met0000405>). Users can define a wide range of non-informative or informative prior distributions for the effect size, heterogeneity, and publication bias components (including selection models and PET-PEESE). The package provides convenient functions for summary, visualizations, and fit diagnostics.
Authors:
RoBMA_3.1.0.tar.gz
RoBMA_3.1.0.tar.gz(r-4.5-noble)RoBMA_3.1.0.tar.gz(r-4.4-noble)
RoBMA.pdf |RoBMA.html✨
RoBMA/json (API)
NEWS
# Install 'RoBMA' in R: |
install.packages('RoBMA', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/fbartos/robma/issues
- Anderson2010 - 27 experimental studies from Anderson et al. (2010) that meet the best practice criteria
- Bem2011 - 9 experimental studies from Bem
- Kroupova2021 - 881 estimates from 69 studies of a relationship between employment and educational outcomes collected by Kroupova et al.
- Lui2015 - 18 studies of a relationship between acculturation mismatch and intergenerational cultural conflict collected by Lui
- Poulsen2006 - 5 studies with a tactile outcome assessment from Poulsen et al. (2006) of the effect of potassium-containing toothpaste on dentine hypersensitivity
Last updated 1 years agofrom:8ff26c7edc. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 24 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 24 2024 |
Exports:BiBMAcheck_RoBMAcheck_setupcheck_setup.BiBMAcheck_setup.regcombine_datacontr.independentcontr.meandifcontr.orthonormald2logORd2ORd2rd2zdiagnosticsdiagnostics_autocorrelationdiagnostics_densitydiagnostics_tracedwnormforestinterpretis.BiBMAis.NoBMAis.NoBMA.regis.RoBMAis.RoBMA.reglogOR2dlogOR2ORlogOR2rlogOR2zmarginal_plotmarginal_summaryn_dn_rn_zNoBMANoBMA.regOR2dOR2logOROR2rOR2zplot_modelspriorprior_factorprior_informedprior_noneprior_PEESEprior_PETprior_weightfunctionpwnormqwnormr2dr2logORr2ORr2zRoBMARoBMA.get_optionRoBMA.optionsRoBMA.regrwnormse_dse_d2se_logORse_d2se_rse_d2se_zse_logOR2se_dse_logOR2se_rse_logOR2se_zse_rse_r2se_dse_r2se_logORse_r2se_zse_zse_z2se_dse_z2se_logORse_z2se_rset_autofit_controlset_convergence_checksz2dz2logORz2ORz2r
Dependencies:BayesToolsbridgesamplingBrobdingnagclicodacolorspaceextraDistrfansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmepillarpkgconfigR6rbibutilsRColorBrewerRcppRdpackrjagsrlangrunjagsscalesstringistringrtibbleutf8vctrsviridisLitewithr
Fitting Custom Meta-Analytic Ensembles
Rendered fromCustomEnsembles.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2023-06-01
Started: 2020-08-06
Hierarchical Bayesian Model-Averaged Meta-Analysis
Rendered fromHierarchicalBMA.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2023-06-01
Started: 2023-06-01
Informed Bayesian Model-Averaged Meta-Analysis in Medicine
Rendered fromMedicineBMA.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2023-06-01
Started: 2021-11-03
Reproducing Bayesian Model-Averaged Meta-Analysis
Rendered fromReproducingBMA.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2023-06-01
Started: 2020-08-06
Tutorial: Adjusting for Publication Bias in JASP and R - Selection Models, PET-PEESE, and Robust Bayesian Meta-Analysis
Rendered fromTutorial.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2023-06-01
Started: 2023-06-01