Package: RationalMatrix 1.0.0

Stéphane Laurent

RationalMatrix: Exact Matrix Algebra for Rational Matrices

Provides functions to deal with matrix algebra for matrices with rational entries: determinant, rank, image and kernel, inverse, Cholesky decomposition. All computations are exact.

Authors:Stéphane Laurent [aut, cre]

RationalMatrix_1.0.0.tar.gz
RationalMatrix_1.0.0.tar.gz(r-4.5-noble)RationalMatrix_1.0.0.tar.gz(r-4.4-noble)
RationalMatrix_1.0.0.tgz(r-4.4-emscripten)RationalMatrix_1.0.0.tgz(r-4.3-emscripten)
RationalMatrix.pdf |RationalMatrix.html
RationalMatrix/json (API)
NEWS

# Install 'RationalMatrix' in R:
install.packages('RationalMatrix', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/stla/rationalmatrix/issues0 issues

Uses libs:
  • gmp– Multiprecision arithmetic library
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

gmpcpp

2.95 score 6 packages 211 downloads 9 exports 4 dependencies

Last updated 2 years agofrom:ad77748e03. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-linux-x86_64OKMar 25 2025
R-4.4-linux-x86_64OKMar 25 2025

Exports:QcholUtDUQdetQinverseQisInjectiveQisInvertibleQisSurjectiveQkernelQrangeQrank

Dependencies:BHgmpRcppRcppEigen

Citation

To cite package ‘RationalMatrix’ in publications use:

Laurent S (2023). RationalMatrix: Exact Matrix Algebra for Rational Matrices. R package version 1.0.0, https://CRAN.R-project.org/package=RationalMatrix.

Corresponding BibTeX entry:

  @Manual{,
    title = {RationalMatrix: Exact Matrix Algebra for Rational
      Matrices},
    author = {Stéphane Laurent},
    year = {2023},
    note = {R package version 1.0.0},
    url = {https://CRAN.R-project.org/package=RationalMatrix},
  }

Readme and manuals

The ‘RationalMatrix’ package

Exact matrix algebra for matrices with rational entries.

library(RationalMatrix)
# a rational matrix
M
##      [,1]   [,2]  [,3]  [,4] 
## [1,] "7"    "4/7" "1/4" "2/3"
## [2,] "3/5"  "2"   "3/2" "3/4"
## [3,] "10/3" "10"  "7"   "1"  
## [4,] "1"    "5/2" "1/3" "7/2"

# determinant
Qdet(M)
## [1] "-227405/3024"

# inverse
Qinverse(M)
##      [,1]            [,2]             [,3]              [,4]             
## [1,] "6678/45481"    "-2274/45481"    "2901/454810"     "-4338/227405"   
## [2,] "-17892/227405" "-491624/227405" "510993/1137025"  "397782/1137025" 
## [3,] "9324/227405"   "666168/227405"  "-525726/1137025" "-572424/1137025"
## [4,] "2352/227405"   "290964/227405"  "-316998/1137025" "101448/1137025"

# check
library(gmp)
as.bigq(M) %*% as.bigq(Qinverse(M))
## Big Rational ('bigq') 4 x 4 matrix:
##      [,1] [,2] [,3] [,4]
## [1,] 1    0    0    0   
## [2,] 0    1    0    0   
## [3,] 0    0    1    0   
## [4,] 0    0    0    1