Package: RMOA 1.1.0

Jan Wijffels

RMOA: Connect R with MOA for Massive Online Analysis

Connect R with MOA (Massive Online Analysis - <https://moa.cms.waikato.ac.nz/>) to build classification models and regression models on streaming data or out-of-RAM data. Also streaming recommendation models are made available.

Authors:Jan Wijffels [aut, cre], BNOSAC [cph]

RMOA_1.1.0.tar.gz
RMOA_1.1.0.tar.gz(r-4.5-noble)RMOA_1.1.0.tar.gz(r-4.4-noble)
RMOA_1.1.0.tgz(r-4.4-emscripten)RMOA_1.1.0.tgz(r-4.3-emscripten)
RMOA.pdf |RMOA.html
RMOA/json (API)
NEWS

# Install 'RMOA' in R:
install.packages('RMOA', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jwijffels/rmoa/issues

Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT

openjdk

2.00 score 1 stars 34 scripts 166 downloads 51 exports 2 dependencies

Last updated 2 years agofrom:c92e804194. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 15 2024
R-4.5-linuxOKDec 15 2024

Exports:AccuracyUpdatedEnsembleAccuracyWeightedEnsembleActiveClassifierADACCAdaHoeffdingOptionTreeAMRulesRegressorASHoeffdingTreeBaselinePredictorBRISMFPredictorDACCdatastreamdatastream_csvdatastream_csv2datastream_dataframedatastream_delimdatastream_delim2datastream_ffdfdatastream_filedatastream_matrixdatastream_tableDecisionStumpfactoriseFadingTargetMeanFIMTDDHoeffdingAdaptiveTreeHoeffdingOptionTreeHoeffdingTreeLeveragingBagLimAttClassifierLimAttHoeffdingTreeMOA_classifierMOA_recommenderMOA_regressorMOAattributesMOAoptionsNaiveBayesNaiveBayesMultinomialOCBoostOnlineAccuracyUpdatedEnsembleORTOOzaBagOzaBagAdwinOzaBagASHTOzaBoostOzaBoostAdwinPerceptronRandomHoeffdingTreeTargetMeanTemporallyAugmentedClassifiertrainMOAWeightedMajorityAlgorithm

Dependencies:rJavaRMOAjars

R interface to MOA for data stream mining

Rendered frompackageShowCase.Rnwusingutils::Sweaveon Dec 15 2024.

Last update: 2018-09-22
Started: 2014-09-18

Readme and manuals

Help Manual

Help pageTopics
Datastream objects and methodsdatastream
data streams on a data.framedatastream_dataframe
data streams on an ffdfdatastream_ffdf
File data streamdatastream_csv datastream_csv2 datastream_delim datastream_delim2 datastream_file datastream_table
data streams on a matrixdatastream_matrix
Convert character strings to factors in a datasetfactorise
MOA active learning classificationActiveClassifier MOA_classification_activelearning
MOA bayesian classificationMOA_classification_bayes NaiveBayes NaiveBayesMultinomial
MOA classification using ensemblesAccuracyUpdatedEnsemble AccuracyWeightedEnsemble ADACC DACC LeveragingBag LimAttClassifier MOA_classification_ensemblelearning OCBoost OnlineAccuracyUpdatedEnsemble OzaBag OzaBagAdwin OzaBagASHT OzaBoost OzaBoostAdwin TemporallyAugmentedClassifier WeightedMajorityAlgorithm
MOA classification treesAdaHoeffdingOptionTree ASHoeffdingTree DecisionStump HoeffdingAdaptiveTree HoeffdingOptionTree HoeffdingTree LimAttHoeffdingTree MOA_classification_trees RandomHoeffdingTree
Create a MOA classifierMOA_classifier
MOA recommendation enginesBaselinePredictor BRISMFPredictor MOA_recommendation_engines
Create a MOA recommendation engineMOA_recommender
Create a MOA regressorMOA_regressor
MOA regressorsAMRulesRegressor FadingTargetMean FIMTDD MOA_regressors ORTO Perceptron TargetMean
Define the attributes of a dataset (factor levels, numeric or string data) in a MOA settingMOAattributes
Get and set options for models build with MOA.MOAoptions
Predict using a MOA classifier, MOA regressor or MOA recommender on a new datasetpredict.MOA_trainedmodel
Summary statistics of a MOA classifiersummary.MOA_classifier
Summary statistics of a MOA recommendersummary.MOA_recommender
Summary statistics of a MOA regressorsummary.MOA_regressor
Train a MOA classifier/regressor/recommendation engine on a datastreamtrainMOA
Train a MOA classifier (e.g. a HoeffdingTree) on a datastreamtrainMOA.MOA_classifier
Train a MOA recommender (e.g. a BRISMFPredictor) on a datastreamtrainMOA.MOA_recommender
Train a MOA regressor (e.g. a FIMTDD) on a datastreamtrainMOA.MOA_regressor