Package: RLoptimal 1.1.1

Kentaro Matsuura

RLoptimal: Optimal Adaptive Allocation Using Deep Reinforcement Learning

An implementation to compute an optimal adaptive allocation rule using deep reinforcement learning in a dose-response study (Matsuura et al. (2022) <doi:10.1002/sim.9247>). The adaptive allocation rule can directly optimize a performance metric, such as power, accuracy of the estimated target dose, or mean absolute error over the estimated dose-response curve.

Authors:Kentaro Matsuura [aut, cre, cph], Koji Makiyama [aut, ctb]

RLoptimal_1.1.1.tar.gz
RLoptimal_1.1.1.tar.gz(r-4.5-noble)RLoptimal_1.1.1.tar.gz(r-4.4-noble)
RLoptimal_1.1.1.tgz(r-4.4-emscripten)RLoptimal_1.1.1.tgz(r-4.3-emscripten)
RLoptimal.pdf |RLoptimal.html
RLoptimal/json (API)
NEWS

# Install 'RLoptimal' in R:
install.packages('RLoptimal', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/matsuurakentaro/rloptimal/issues

3.50 score 21 scripts 366 downloads 8 exports 38 dependencies

Last updated 3 days agofrom:e7973134b7. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-linuxOKNov 22 2024

Exports:adjust_significance_levelAllocationRuleclean_python_settingslearn_allocation_rulerl_config_setrl_dnn_configsetup_pythonsimulate_one_trial

Dependencies:clicolorspaceDoseFindingfansifarverggplot2gluegtablehereisobandjsonlitelabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmepillarpkgconfigpngR6rappdirsRColorBrewerRcppRcppTOMLreticulaterlangrprojrootscalestibbleutf8vctrsviridisLitewithr

Optimal Adaptive Allocation Using Deep Reinforcement Learning

Rendered fromRLoptimal.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2024-11-03
Started: 2024-10-04