Package: RJcluster 3.2.4

Rachael Shudde

RJcluster: A Fast Clustering Algorithm for High Dimensional Data Based on the Gram Matrix Decomposition

Clustering algorithm for high dimensional data. Assuming that P feature measurements on N objects are arranged in an N×P matrix X, this package provides clustering based on the left Gram matrix XX^T. To simulate test data, type "help('simulate_HD_data')" and to learn how to use the clustering algorithm, type "help('RJclust')". To cite this package, type 'citation("RJcluster")'.

Authors:Shahina Rahman [aut], Valen E. Johnson [aut], Suhasini Subba Rao [aut], Rachael Shudde [aut, cre, trl]

RJcluster_3.2.4.tar.gz
RJcluster_3.2.4.tar.gz(r-4.5-noble)RJcluster_3.2.4.tar.gz(r-4.4-noble)
RJcluster_3.2.4.tgz(r-4.4-emscripten)RJcluster_3.2.4.tgz(r-4.3-emscripten)
RJcluster.pdf |RJcluster.html
RJcluster/json (API)

# Install 'RJcluster' in R:
install.packages('RJcluster', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 5 scripts 285 downloads 3 exports 37 dependencies

Last updated 3 years agofrom:61d1046580. Checks:OK: 1 WARNING: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-linux-x86_64WARNINGNov 20 2024

Exports:Mutual_InformationRJclustsimulate_HD_data

Dependencies:base64encbslibcachemclicodetoolsdigestevaluatefastmapfontawesomeforeachfsgluehighrhtmltoolshtmlwidgetsinfotheoiteratorsjquerylibjsonliteknitrlifecyclematrixStatsmclustmemoisemimeprofvisR6rappdirsRcppRcppArmadillorlangrmarkdownsasstinytexvctrsxfunyaml

RJclust

Rendered fromRJclust_Vignette.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2021-07-07
Started: 2020-09-23