Package: REN 0.1.0
REN: Regularization Ensemble for Robust Portfolio Optimization
Portfolio optimization is achieved through a combination of regularization techniques and ensemble methods that are designed to generate stable out-of-sample return predictions, particularly in the presence of strong correlations among assets. The package includes functions for data preparation, parallel processing, and portfolio analysis using methods such as Mean-Variance, James-Stein, LASSO, Ridge Regression, and Equal Weighting. It also provides visualization tools and performance metrics, such as the Sharpe ratio, volatility, and maximum drawdown, to assess the results.
Authors:
REN_0.1.0.tar.gz
REN_0.1.0.tar.gz(r-4.5-noble)REN_0.1.0.tar.gz(r-4.4-noble)
REN_0.1.0.tgz(r-4.4-emscripten)REN_0.1.0.tgz(r-4.3-emscripten)
REN.pdf |REN.html✨
REN/json (API)
NEWS
# Install 'REN' in R: |
install.packages('REN', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- FF25 - FF25 Dataset
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 months agofrom:7ca4b131b3. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 10 2024 |
R-4.5-linux | OK | Dec 10 2024 |
Exports:buh.clustinsert.atperform_analysispo.avgpo.bhupo.colspo.covShrinkpo.grossExppo.JMpo.SWpo.SW.lassopo.TZTprepare_datarensetup_parallel
Dependencies:clicodetoolscolorspacecorpcorcpp11doParallelfansifarverforeachgenericsggplot2glmnetgluegtableisobanditeratorslabelinglatticelifecyclelubridatemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrquadprogR6RColorBrewerRcppRcppEigenreshape2rlangscalesshapestringistringrsurvivaltibbletictoctimechangeutf8vctrsviridisLitewithr