Package: REN 0.1.0

Bonsoo Koo

REN: Regularization Ensemble for Robust Portfolio Optimization

Portfolio optimization is achieved through a combination of regularization techniques and ensemble methods that are designed to generate stable out-of-sample return predictions, particularly in the presence of strong correlations among assets. The package includes functions for data preparation, parallel processing, and portfolio analysis using methods such as Mean-Variance, James-Stein, LASSO, Ridge Regression, and Equal Weighting. It also provides visualization tools and performance metrics, such as the Sharpe ratio, volatility, and maximum drawdown, to assess the results.

Authors:Hardik Dixit [aut], Shijia Wang [aut], Bonsoo Koo [aut, cre], Cash Looi [aut], Hong Wang [aut]

REN_0.1.0.tar.gz
REN_0.1.0.tar.gz(r-4.5-noble)REN_0.1.0.tar.gz(r-4.4-noble)
REN_0.1.0.tgz(r-4.4-emscripten)REN_0.1.0.tgz(r-4.3-emscripten)
REN.pdf |REN.html
REN/json (API)
NEWS

# Install 'REN' in R:
install.packages('REN', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 2 scripts 131 downloads 15 exports 48 dependencies

Last updated 3 months agofrom:7ca4b131b3. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 10 2024
R-4.5-linuxOKDec 10 2024

Exports:buh.clustinsert.atperform_analysispo.avgpo.bhupo.colspo.covShrinkpo.grossExppo.JMpo.SWpo.SW.lassopo.TZTprepare_datarensetup_parallel

Dependencies:clicodetoolscolorspacecorpcorcpp11doParallelfansifarverforeachgenericsggplot2glmnetgluegtableisobanditeratorslabelinglatticelifecyclelubridatemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrquadprogR6RColorBrewerRcppRcppEigenreshape2rlangscalesshapestringistringrsurvivaltibbletictoctimechangeutf8vctrsviridisLitewithr

'REN': Regularization Ensemble for Portfolio Optimization

Rendered fromREN.Rmdusingknitr::rmarkdownon Dec 10 2024.

Last update: 2024-10-10
Started: 2024-10-10