Package: ODT 1.0.0
ODT: Optimal Decision Trees Algorithm
Implements a tree-based method specifically designed for personalized medicine applications. By using genomic and mutational data, 'ODT' efficiently identifies optimal drug recommendations tailored to individual patient profiles. The 'ODT' algorithm constructs decision trees that bifurcate at each node, selecting the most relevant markers (discrete or continuous) and corresponding treatments, thus ensuring that recommendations are both personalized and statistically robust. This iterative approach enhances therapeutic decision-making by refining treatment suggestions until a predefined group size is achieved. Moreover, the simplicity and interpretability of the resulting trees make the method accessible to healthcare professionals. Includes functions for training the decision tree, making predictions on new samples or patients, and visualizing the resulting tree. For detailed insights into the methodology, please refer to Gimeno et al. (2023) <doi:10.1093/bib/bbad200>.
Authors:
ODT_1.0.0.tar.gz
ODT_1.0.0.tar.gz(r-4.5-noble)ODT_1.0.0.tar.gz(r-4.4-noble)
ODT_1.0.0.tgz(r-4.4-emscripten)ODT_1.0.0.tgz(r-4.3-emscripten)
ODT.pdf |ODT.html✨
ODT/json (API)
NEWS
# Install 'ODT' in R: |
install.packages('ODT', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- drug_response_w12 - Drug_response_w12 data
- drug_response_w34 - Drug_response_w34 data
- expression_w12 - Expression_w12 Data Set
- expression_w34 - Expression_w34 Data Set
- mutations_w12 - Mutations_w12 Data Set
- mutations_w34 - Mutations_w34 Data Set
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 months agofrom:85eecf4f2c. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 18 2024 |
R-4.5-linux | OK | Dec 18 2024 |
Exports:niceTreepredictTreetrainTree
Dependencies:base64encbitbit64bslibcachemclicliprcolorspacecpp11crayoncurldata.treeDiagrammeRDiagrammeRsvgdigestdplyrevaluatefansifarverfastmapfontawesomeFormulafsgenericsgluehighrhmshtmltoolshtmlwidgetsigraphinumjquerylibjsonliteknitrlabelinglatticelibcoinlifecyclemagickmagrittrMatrixmatrixStatsmemoisemimemunsellmvtnormpartykitpillarpkgconfigprettyunitsprogresspurrrR6rappdirsRColorBrewerRcppreadrrlangrmarkdownrpartrstudioapirsvgsassscalesstringistringrsurvivaltibbletidyrtidyselecttinytextzdbutf8V8vctrsviridisLitevisNetworkvroomwithrxfunyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
drug_response_w12 data | drug_response_w12 |
drug_response_w34 data | drug_response_w34 |
expression_w12 Data Set | expression_w12 |
expression_w34 Data Set | expression_w34 |
mutations_w12 Data Set | mutations_w12 |
mutations_w34 Data Set | mutations_w34 |
niceTree function | niceTree |
Predict Treatment Outcomes with a Trained Decision Tree | predictTree |
trainTree Function | trainTree |