Package: MixMatrix 0.2.8
MixMatrix: Classification with Matrix Variate Normal and t Distributions
Provides sampling and density functions for matrix variate normal, t, and inverted t distributions; ML estimation for matrix variate normal and t distributions using the EM algorithm, including some restrictions on the parameters; and classification by linear and quadratic discriminant analysis for matrix variate normal and t distributions described in Thompson et al. (2019) <doi:10.1080/10618600.2019.1696208>. Performs clustering with matrix variate normal and t mixture models.
Authors:
MixMatrix_0.2.8.tar.gz
MixMatrix_0.2.8.tar.gz(r-4.5-noble)MixMatrix_0.2.8.tar.gz(r-4.4-noble)
MixMatrix_0.2.8.tgz(r-4.4-emscripten)MixMatrix_0.2.8.tgz(r-4.3-emscripten)
MixMatrix.pdf |MixMatrix.html✨
MixMatrix/json (API)
NEWS
# Install 'MixMatrix' in R: |
install.packages('MixMatrix', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/gzt/mixmatrix/issues
Last updated 2 months agofrom:65280b6201. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-linux-x86_64 | OK | Oct 31 2024 |
Exports:ARgenerateCSgeneratedmatrixinvtdmatrixnormdmatrixtinit_matrixmixturematrixldamatrixmixturematrixqdaMLmatrixnormMLmatrixtrmatrixinvtrmatrixnormrmatrixt
Dependencies:CholWishartglueRcppRcppArmadillo
Discriminant Analysis for Matrix Variate Distributions
Rendered fromdiscriminant-analysis.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2024-10-01
Started: 2019-07-28
Matrix Variate Normal Distributions with MixMatrix
Rendered frommatrixnormal.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2024-10-01
Started: 2019-07-28
ML estimation of the Matrix Variate t Distribution
Rendered frommatrix-t-estimation.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2024-10-01
Started: 2019-07-28
Matrix Variate Mixture Models with the t distribution
Rendered frommixturemodel.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2024-10-01
Started: 2019-07-28
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Generate a unit AR(1) covariance matrix | ARgenerate |
Generate a compound symmetric correlation matrix | CSgenerate |
Initializing settings for Matrix Mixture Models | init_matrixmixture |
LDA for matrix variate distributions | matrixlda |
Fit a matrix variate mixture model | matrixmixture |
Quadratic Discriminant Analysis for Matrix Variate Observations | matrixqda |
Maximum likelihood estimation for matrix normal distributions | MLmatrixnorm |
Maximum likelihood estimation for matrix variate t distributions | MLmatrixt |
Classify Matrix Variate Observations by Linear Discrimination | predict.matrixlda |
Classify Matrix Variate Observations by Quadratic Discrimination | predict.matrixqda |
Distribution functions for matrix variate inverted t distributions | dmatrixinvt rmatrixinvt |
Matrix variate Normal distribution functions | dmatrixnorm rmatrixnorm |
Distribution functions for the matrix variate t distribution. | dmatrixt rmatrixt |