Package: MaxWiK 1.0.5

Yuri Nagornov

MaxWiK: Machine Learning Method Based on Isolation Kernel Mean Embedding

Incorporates Approximate Bayesian Computation to get a posterior distribution and to select a model optimal parameter for an observation point. Additionally, the meta-sampling heuristic algorithm is realized for parameter estimation, which requires no model runs and is dimension-independent. A sampling scheme is also presented that allows model runs and uses the meta-sampling for point generation. A predictor is realized as the meta-sampling for the model output. All the algorithms leverage a machine learning method utilizing the maxima weighted Isolation Kernel approach, or 'MaxWiK'. The method involves transforming raw data to a Hilbert space (mapping) and measuring the similarity between simulated points and the maxima weighted Isolation Kernel mapping corresponding to the observation point. Comprehensive details of the methodology can be found in the papers Iurii Nagornov (2024) <doi:10.1007/978-3-031-66431-1_16> and Iurii Nagornov (2023) <doi:10.1007/978-3-031-29168-5_18>.

Authors:Yuri Nagornov [aut, cre, cph]

MaxWiK_1.0.5.tar.gz
MaxWiK_1.0.5.tar.gz(r-4.5-noble)MaxWiK_1.0.5.tar.gz(r-4.4-noble)
MaxWiK_1.0.5.tgz(r-4.4-emscripten)MaxWiK_1.0.5.tgz(r-4.3-emscripten)
MaxWiK.pdf |MaxWiK.html
MaxWiK/json (API)
NEWS

# Install 'MaxWiK' in R:
install.packages('MaxWiK', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • Data.2D - List of the objects for the 2D example of the MaxWiK methods usage

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 3 scripts 12 exports 36 dependencies

Last updated 9 hours agofrom:6d52b74b68. Checks:OK: 1 WARNING: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 25 2024
R-4.5-linuxWARNINGNov 25 2024

Exports:apply_rangeget.MaxWiKMaxWiK_templatesMaxWiK.ggplot.densityMaxWiK.predictormeta_samplingMSE_simread_fileread_hyperparametersrestrict_datasampler_MaxWiKsampler_MaxWiK_parallel

Dependencies:abcabc.dataclicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclelocfitmagrittrMASSMatrixMatrixModelsmgcvmunsellnlmennetpillarpkgconfigquantregR6RColorBrewerrlangscalesSparseMsurvivaltibbleutf8vctrsviridisLitewithr

MaxWiK

Rendered fromUser-Guide.Rmdusingknitr::rmarkdownon Nov 25 2024.

Last update: 2024-11-25
Started: 2024-11-25