Package: MLModelSelection 1.0

Kuo-Jung Lee

MLModelSelection: Model Selection in Multivariate Longitudinal Data Analysis

An efficient Gibbs sampling algorithm is developed for Bayesian multivariate longitudinal data analysis with the focus on selection of important elements in the generalized autoregressive matrix. It provides posterior samples and estimates of parameters. In addition, estimates of several information criteria such as Akaike information criterion (AIC), Bayesian information criterion (BIC), deviance information criterion (DIC) and prediction accuracy such as the marginal predictive likelihood (MPL) and the mean squared prediction error (MSPE) are provided for model selection.

Authors:Kuo-Jung Lee

MLModelSelection_1.0.tar.gz
MLModelSelection_1.0.tar.gz(r-4.5-noble)MLModelSelection_1.0.tar.gz(r-4.4-noble)
MLModelSelection_1.0.tgz(r-4.4-emscripten)MLModelSelection_1.0.tgz(r-4.3-emscripten)
MLModelSelection.pdf |MLModelSelection.html
MLModelSelection/json (API)

# Install 'MLModelSelection' in R:
install.packages('MLModelSelection', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

1.00 score 5 scripts 129 downloads 1 exports 4 dependencies

Last updated 5 years agofrom:c619b68ac3. Checks:2 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 07 2025
R-4.5-linux-x86_64OKJan 07 2025

Exports:MLModelSelectionMCMC

Dependencies:MASSRcppRcppArmadilloRcppDist