Package: MGMM 1.0.1.1

Zachary McCaw

MGMM: Missingness Aware Gaussian Mixture Models

Parameter estimation and classification for Gaussian Mixture Models (GMMs) in the presence of missing data. This package complements existing implementations by allowing for both missing elements in the input vectors and full (as opposed to strictly diagonal) covariance matrices. Estimation is performed using an expectation conditional maximization algorithm that accounts for missingness of both the cluster assignments and the vector components. The output includes the marginal cluster membership probabilities; the mean and covariance of each cluster; the posterior probabilities of cluster membership; and a completed version of the input data, with missing values imputed to their posterior expectations. For additional details, please see McCaw ZR, Julienne H, Aschard H. "Fitting Gaussian mixture models on incomplete data." <doi:10.1186/s12859-022-04740-9>.

Authors:Zachary McCaw [aut, cre]

MGMM_1.0.1.1.tar.gz
MGMM_1.0.1.1.tar.gz(r-4.5-noble)MGMM_1.0.1.1.tar.gz(r-4.4-noble)
MGMM_1.0.1.1.tgz(r-4.4-emscripten)MGMM_1.0.1.1.tgz(r-4.3-emscripten)
MGMM.pdf |MGMM.html
MGMM/json (API)

# Install 'MGMM' in R:
install.packages('MGMM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

2.85 score 35 scripts 264 downloads 2 mentions 8 exports 6 dependencies

Last updated 1 years agofrom:bb4555b9e9. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 23 2024
R-4.5-linux-x86_64OKDec 23 2024

Exports:ChooseKClustQualCombineMIsFitGMMGenImputationPartitionDataReconstituteDatarGMM

Dependencies:BHclustermvnfastplyrRcppRcppArmadillo

Missingness Aware Gaussian Mixture Models

Rendered fromMGMM.Rnwusingutils::Sweaveon Dec 23 2024.

Last update: 2020-08-26
Started: 2020-08-26