Package: Keng 2024.11.17

Qingyao Zhang

Keng: Knock Errors Off Nice Guesses

Miscellaneous functions and data used in Qingyao's psychological research and teaching. Keng currently has a built-in dataset depress, and could (1) scale a vector, (2) test the significance and compute the cut-off values of Pearson's r without raw data, (3) compare lm()'s fitted outputs using R-squared and PRE (Proportional Reduction in Error, also called partial R-squared or partial Eta-squared).

Authors:Qingyao Zhang [aut, cre]

Keng_2024.11.17.tar.gz
Keng_2024.11.17.tar.gz(r-4.5-noble)Keng_2024.11.17.tar.gz(r-4.4-noble)
Keng_2024.11.17.tgz(r-4.4-emscripten)Keng_2024.11.17.tgz(r-4.3-emscripten)
Keng.pdf |Keng.html
Keng/json (API)
NEWS

# Install 'Keng' in R:
install.packages('Keng', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/qyaozh/keng/issues

Datasets:

3.48 score 334 downloads 4 exports 0 dependencies

Last updated 1 days agofrom:991c46ff1a. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-linuxOKNov 18 2024

Exports:compare_lmcut_rScaletest_r

Dependencies:

Partial Regression

Rendered fromPartialRegression.Rmdusingknitr::rmarkdownon Nov 18 2024.

Last update: 2024-11-17
Started: 2024-11-17

PRE

Rendered fromPRE.Rmdusingknitr::rmarkdownon Nov 18 2024.

Last update: 2024-11-17
Started: 2024-11-17