Package: KODAMA 2.4.1

Stefano Cacciatore

KODAMA: Knowledge Discovery by Accuracy Maximization

An unsupervised and semi-supervised learning algorithm that performs feature extraction from noisy and high-dimensional data. It facilitates identification of patterns representing underlying groups on all samples in a data set. Based on Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA. (2017) Bioinformatics <doi:10.1093/bioinformatics/btw705> and Cacciatore S, Luchinat C, Tenori L. (2014) Proc Natl Acad Sci USA <doi:10.1073/pnas.1220873111>.

Authors:Stefano Cacciatore [aut, trl, cre], Leonardo Tenori [aut]

KODAMA_2.4.1.tar.gz
KODAMA_2.4.1.tar.gz(r-4.5-noble)KODAMA_2.4.1.tar.gz(r-4.4-noble)
KODAMA_2.4.1.tgz(r-4.4-emscripten)KODAMA_2.4.1.tgz(r-4.3-emscripten)
KODAMA.pdf |KODAMA.html
KODAMA/json (API)

# Install 'KODAMA' in R:
install.packages('KODAMA', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • MetRef - Nuclear Magnetic Resonance Spectra of Urine Samples
  • USA - State of the Union Data Set
  • clinical - Clinical Data of a Cohort of Prostate Cancer Patiens
  • lymphoma - Lymphoma Gene Expression Dataset

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

4.43 score 2 stars 1 packages 64 scripts 903 downloads 7 mentions 27 exports 21 dependencies

Last updated 2 months agofrom:7b1c47a357. Checks:OK: 1 WARNING: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 06 2024
R-4.5-linux-x86_64WARNINGDec 06 2024

Exports:categorical.testcontinuous.testcore_cppcorrelation.testdinisurfacefloydfrequency_matchinghelicoidk.testknn_Armadilloknn.double.cvknn.kodamaKODAMA.matrixKODAMA.visualizationloadsmcplotmulti_analysisnormalizationpcapls.double.cvpls.kodamaRQscalingspiralsswissrolltransformytxtsummary

Dependencies:askpassherejsonlitelatticeMatrixminervaopensslpngrappdirsRcppRcppArmadilloRcppEigenRcppTOMLreticulaterlangrprojrootRSpectraRtsnesysumapwithr

Knowledge Discovery by Accuracy Maximization

Rendered fromKODAMA.Rmdusingknitr::rmarkdownon Dec 06 2024.

Last update: 2022-12-09
Started: 2016-10-12