Package: KODAMA 2.4.1
KODAMA: Knowledge Discovery by Accuracy Maximization
An unsupervised and semi-supervised learning algorithm that performs feature extraction from noisy and high-dimensional data. It facilitates identification of patterns representing underlying groups on all samples in a data set. Based on Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA. (2017) Bioinformatics <doi:10.1093/bioinformatics/btw705> and Cacciatore S, Luchinat C, Tenori L. (2014) Proc Natl Acad Sci USA <doi:10.1073/pnas.1220873111>.
Authors:
KODAMA_2.4.1.tar.gz
KODAMA_2.4.1.tar.gz(r-4.5-noble)KODAMA_2.4.1.tar.gz(r-4.4-noble)
KODAMA_2.4.1.tgz(r-4.4-emscripten)KODAMA_2.4.1.tgz(r-4.3-emscripten)
KODAMA.pdf |KODAMA.html✨
KODAMA/json (API)
# Install 'KODAMA' in R: |
install.packages('KODAMA', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 months agofrom:7b1c47a357. Checks:OK: 1 WARNING: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 06 2024 |
R-4.5-linux-x86_64 | WARNING | Dec 06 2024 |
Exports:categorical.testcontinuous.testcore_cppcorrelation.testdinisurfacefloydfrequency_matchinghelicoidk.testknn_Armadilloknn.double.cvknn.kodamaKODAMA.matrixKODAMA.visualizationloadsmcplotmulti_analysisnormalizationpcapls.double.cvpls.kodamaRQscalingspiralsswissrolltransformytxtsummary
Dependencies:askpassherejsonlitelatticeMatrixminervaopensslpngrappdirsRcppRcppArmadilloRcppEigenRcppTOMLreticulaterlangrprojrootRSpectraRtsnesysumapwithr