Package: JointAI 1.0.6
JointAI: Joint Analysis and Imputation of Incomplete Data
Joint analysis and imputation of incomplete data in the Bayesian framework, using (generalized) linear (mixed) models and extensions there of, survival models, or joint models for longitudinal and survival data, as described in Erler, Rizopoulos and Lesaffre (2021) <doi:10.18637/jss.v100.i20>. Incomplete covariates, if present, are automatically imputed. The package performs some preprocessing of the data and creates a 'JAGS' model, which will then automatically be passed to 'JAGS' <https://mcmc-jags.sourceforge.io/> with the help of the package 'rjags'.
Authors:
JointAI_1.0.6.tar.gz
JointAI_1.0.6.tar.gz(r-4.5-noble)JointAI_1.0.6.tar.gz(r-4.4-noble)
JointAI_1.0.6.tgz(r-4.4-emscripten)JointAI_1.0.6.tgz(r-4.3-emscripten)
JointAI.pdf |JointAI.html✨
JointAI/json (API)
NEWS
# Install 'JointAI' in R: |
install.packages('JointAI', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nerler/jointai/issues
Pkgdown site:https://nerler.github.io
Last updated 9 months agofrom:97d895bfdb. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 29 2024 |
R-4.5-linux | OK | Dec 29 2024 |
Exports:add_samplesall_varsbetamm_impbetareg_impbsclean_survnameclm_impclmm_impcoxph_impdefault_hyperparsdensplotextract_stateget_familyget_MIdatget_missinfoget_Mlistget_modeltypeglm_impglme_impglmer_impGR_critJM_implist_modelslm_implme_implmer_implognorm_implognormmm_impMC_errormd_patternmlogit_impmlogitmm_impnsparametersplot_allplot_imp_distrpredDFrd_vcovset_refcatsum_durationSurvsurvreg_imptraceplot
Dependencies:briocallrclicodacodetoolscrayondescdiffobjdigestellipseevaluatefftwtoolsfsfutureglobalsgluejsonlitelatticelifecyclelistenvmagrittrMASSmathjaxrMatrixmcmcseparallellypkgbuildpkgloadpraiseprocessxpsR6RcppRcppArmadillorjagsrlangrprojrootsurvivaltestthatwaldowithr
After Fitting
Rendered fromAfterFitting.Rmd
usingknitr::rmarkdown
on Dec 29 2024.Last update: 2022-09-03
Started: 2018-12-04
MCMC Settings
Rendered fromMCMCsettings.Rmd
usingknitr::rmarkdown
on Dec 29 2024.Last update: 2022-09-03
Started: 2018-12-04
Model Specification
Rendered fromModelSpecification.Rmd
usingknitr::rmarkdown
on Dec 29 2024.Last update: 2022-09-03
Started: 2018-08-14
Parameter Selection
Rendered fromSelectingParameters.Rmd
usingknitr::rmarkdown
on Dec 29 2024.Last update: 2022-09-03
Started: 2018-08-14