Histogram-Valued Data Analysis | HistDAWass-package HistDAWass _PACKAGE |
extract from a MatH Method [ | [ [,MatH,ANY,ANY,ANY-method [,MatH-method |
Method * | *,distributionH,distributionH-method *,distributionH,numeric-method *,numeric,distributionH-method *-methods |
Method + | + +,distributionH,distributionH-method +,distributionH,numeric-method +,numeric,distributionH-method |
Age pyramids of all the countries of the World in 2014 | Age_Pyramids_2014 |
Agronomique data | Agronomique |
Blood dataset for Histogram data analysis | BLOOD |
Blood dataset from Brito P. for Histogram data analysis | BloodBRITO |
Method Center.cell.MatH Centers all the cells of a matrix of distributions | Center.cell.MatH Center.cell.MatH,MatH-method |
Method 'checkEmptyBins' | checkEmptyBins checkEmptyBins,distributionH-method |
A monthly climatic dataset of China | China_Month |
A seasonal climatic dataset of China | China_Seas |
Method 'compP' | compP compP,distributionH,numeric-method compP,distributionH-method |
Method 'compQ' | compQ compQ,distributionH,numeric-method compQ,distributionH-method |
Method 'crwtransform': returns the centers and the radii of bins of a distribution | crwtransform crwtransform,distributionH-method |
From real data to distributionH. | data2hist |
Class distributionH. | distributionH distributionH-class initialize,distributionH-method |
Method 'dotpW' | dotpW dotpW,distributionH,distributionH-method dotpW,distributionH,numeric-method dotpW,distributionH-method dotpW,numeric,distributionH-method |
Ramer-Douglas-Peucker algorithm for curve fitting with a PolyLine | DouglasPeucker |
Method get.cell.MatH Returns the histogram in a cell of a matrix of distributions | get.cell.MatH get.cell.MatH,MatH,numeric,numeric-method get.cell.MatH,MatH-method |
Method 'get.distr': show the distribution | get.distr get.distr,distributionH-method |
Method 'get.histo': show the distribution with bins | get.histo get.histo,distributionH-method |
Method 'get.m': the mean of a distribution | get.m get.m,distributionH-method |
Method get.MatH.main.info | get.MatH.main.info get.MatH.main.info,MatH-method |
Method get.MatH.ncols | get.MatH.ncols get.MatH.ncols,MatH-method |
Method get.MatH.nrows | get.MatH.nrows get.MatH.nrows,MatH-method |
Method get.MatH.rownames | get.MatH.rownames get.MatH.rownames,MatH-method |
Method get.MatH.stats | get.MatH.stats get.MatH.stats,MatH-method |
Method get.MatH.varnames | get.MatH.varnames get.MatH.varnames,MatH-method |
Method 'get.s': the standard deviation of a distribution | get.s get.s,distributionH-method |
Class HTS | HTS HTS-class initialize,HTS-method |
Smoothing with exponential smoothing of a histogram time series | HTS.exponential.smoothing |
Smoothing with moving averages of a histogram time series | HTS.moving.averages |
K-NN predictions of a histogram time series | HTS.predict.knn |
Method is.registeredMH | is.registeredMH is.registeredMH,MatH-method |
Method 'kurtH': computes the kurthosis of a distribution | kurtH kurtH,distributionH-method |
Class MatH. | initialize,MatH-method MatH MatH-class |
Method 'meanH': computes the mean of a distribution | meanH meanH,distributionH-method |
Method - | -,distributionH,distributionH-method -,distributionH,numeric-method -,numeric,distributionH-method minus |
Full Ozone dataset for Histogram data analysis | OzoneFull |
Complete Ozone dataset for Histogram data analysis | OzoneH |
A function for plotting functions of errors | plot_errors |
plot for a distributionH object | plot,distributionH-method plot-distributionH |
Method plot for a histogram time series | plot,HTS-method plot-HTS |
Method plot for a matrix of histograms | plot,MatH-method plot-MatH |
plot for a TdistributionH object | plot,TdistributionH-method plot-TdistributionH |
A function for comparing observed vs predicted histograms | plotPredVsObs |
Method 'register' | register register,distributionH,distributionH-method register,distributionH-method |
Method registerMH | registerMH registerMH,MatH-method |
A histogram-valued dataset of returns | RetHTS |
Method 'rQQ' | rQQ rQQ,distributionH,distributionH-method rQQ,distributionH-method |
Method set.cell.MatH assign a histogram to a cell of a matrix of histograms | set.cell.MatH set.cell.MatH,distributionH,MatH,numeric,numeric-method set.cell.MatH,MatH-method |
Shortes distance from a point o a 2d segment | ShortestDistance |
Method show for distributionH | show show,distributionH-method |
Method show for MatH | show,MatH-method show-MatH |
Method 'skewH': computes the skewness of a distribution | skewH skewH,distributionH-method |
Stations coordinates of China_Month and China_Seas datasets | stations_coordinates |
Method 'stdH': computes the standard deviation of a distribution | stdH stdH,distributionH-method |
Method 'subsetHTS': extract a subset of a histogram time series | subsetHTS subsetHTS,HTS,numeric,numeric-method |
A function for summarize HTS | summaryHTS |
Class TdistributionH | initialize,TdistributionH-method TdistributionH TdistributionH-class |
Class TMatH | initialize,TMatH-method TMatH TMatH-class |
Method 'WassSqDistH' | WassSqDistH WassSqDistH,distributionH,distributionH-method WassSqDistH,distributionH-method |
Batch Kohonen self-organizing 2d maps using adaptive distances for histogram-valued data | WH_2d_Adaptive_Kohonen_maps |
Batch Kohonen self-organizing 2d maps for histogram-valued data | WH_2d_Kohonen_maps |
Fuzzy c-means with adaptive distances for histogram-valued data | WH_adaptive_fcmeans |
K-means of a dataset of histogram-valued data using adaptive Wasserstein distances | WH_adaptive.kmeans |
Fuzzy c-means of a dataset of histogram-valued data | WH_fcmeans |
Hierarchical clustering of histogram data | WH_hclust |
K-means of a dataset of histogram-valued data | WH_kmeans |
L2 Wasserstein distance matrix | WH_MAT_DIST |
Principal components analysis of histogram variable based on Wasserstein distance | WH.1d.PCA |
Method WH.bind | WH.bind WH.bind,MatH,MatH-method WH.bind,MatH-method |
Method WH.bind.col | WH.bind.col WH.bind.col,MatH,MatH-method WH.bind.col,MatH-method |
Method WH.bind.row | WH.bind.row WH.bind.row,MatH,MatH-method WH.bind.row,MatH-method |
Method WH.correlation | WH.correlation WH.correlation,MatH-method |
Method WH.correlation2 | WH.correlation2 WH.correlation2,MatH,MatH-method WH.correlation2,MatH-method |
Method WH.mat.prod | WH.mat.prod WH.mat.prod,MatH,MatH-method WH.mat.prod,MatH-method |
Method WH.mat.sum | WH.mat.sum WH.mat.sum,MatH,MatH-method WH.mat.sum,MatH-method |
Principal components analysis of a set of histogram variable based on Wasserstein distance | WH.MultiplePCA |
Plot histograms of individuals after a Multiple factor analysis of Histogram Variables | WH.plot_multiple_indivs |
Plotting Spanish fun plots for Multiple factor analysis of Histogram Variables | WH.plot_multiple_Spanish.funs |
Goodness of Fit indices for Multiple regression of histogram variables based on a two component model and L2 Wasserstein distance | WH.regression.GOF |
Multiple regression analysis for histogram variables based on a two component model and L2 Wasserstein distance | WH.regression.two.components |
Multiple regression analysis for histogram variables based on a two component model and L2 Wasserstein distance | WH.regression.two.components.predict |
Method WH.SSQ | WH.SSQ WH.SSQ,MatH-method |
Method WH.SSQ2 | WH.SSQ2 WH.SSQ2,MatH,MatH-method WH.SSQ2,MatH-method |
Method WH.var.covar | WH.var.covar WH.var.covar,MatH-method |
Method WH.var.covar2 | WH.var.covar2 WH.var.covar2,MatH,MatH-method WH.var.covar2,MatH-method |
Method WH.vec.mean | WH.vec.mean WH.vec.mean,MatH-method |
Method WH.vec.sum | WH.vec.sum WH.vec.sum,MatH-method |