Package: GauPro 0.2.13
GauPro: Gaussian Process Fitting
Fits a Gaussian process model to data. Gaussian processes are commonly used in computer experiments to fit an interpolating model. The model is stored as an 'R6' object and can be easily updated with new data. There are options to run in parallel, and 'Rcpp' has been used to speed up calculations. For more info about Gaussian process software, see Erickson et al. (2018) <doi:10.1016/j.ejor.2017.10.002>.
Authors:
GauPro_0.2.13.tar.gz
GauPro_0.2.13.tar.gz(r-4.5-noble)GauPro_0.2.13.tar.gz(r-4.4-noble)
GauPro_0.2.13.tgz(r-4.4-emscripten)GauPro_0.2.13.tgz(r-4.3-emscripten)
GauPro.pdf |GauPro.html✨
GauPro/json (API)
NEWS
# Install 'GauPro' in R: |
install.packages('GauPro', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/collinerickson/gaupro/issues
Last updated 2 months agofrom:26480aa5c8. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 26 2024 |
R-4.5-linux-x86_64 | OK | Nov 26 2024 |
Exports:arma_mult_cube_veccorr_cubic_matrix_symCcorr_exponential_matrix_symCcorr_gauss_dCdXcorr_gauss_matrixcorr_gauss_matrix_armaCcorr_gauss_matrix_sym_armaCcorr_gauss_matrix_symCcorr_gauss_matrixCcorr_latentfactor_matrix_symCcorr_latentfactor_matrixmatrixCcorr_matern32_matrix_symCcorr_matern52_matrix_symCcorr_orderedfactor_matrix_symCcorr_orderedfactor_matrixmatrixCCubicExponentialFactorKernelGauProGauPro_baseGauPro_GaussGauPro_Gauss_LOOGauPro_kernel_modelGauPro_kernel_model_LOOGaussianGaussian_devianceCGaussian_hessianCGaussian_hessianCCGaussian_hessianRGowerFactorKernelgpkmgradfuncarraygradfuncarrayRIgnoreIndsKernelk_Cubick_Exponentialk_FactorKernelk_Gaussiank_GowerFactorKernelk_IgnoreIndsKernelk_LatentFactorKernelk_Matern32k_Matern52k_OrderedFactorKernelk_Periodick_PowerExpk_RatQuadk_Trianglek_Whitekernel_cubic_dCkernel_exponential_dCkernel_gauss_dCkernel_latentFactor_dCkernel_matern32_dCkernel_matern52_dCkernel_orderedFactor_dCkernel_productkernel_sumLatentFactorKernelMatern32Matern52OrderedFactorKernelPeriodicPowerExpRatQuadsqrt_matrixtrend_0trend_ctrend_LMTriangleWhite
Dependencies:base64encbslibcachemclicolorspacecpp11digestdplyrevaluatefansifarverfastmapfontawesomefsgenericsggplot2gluegtablehighrhtmltoolsisobandjquerylibjsonliteknitrlabelinglatticelbfgslifecyclemagrittrMASSMatrixmemoisemgcvmimemixoptmunsellnlmenumDerivpillarpkgconfigpurrrR6rappdirsRColorBrewerRcppRcppArmadillorlangrmarkdownsassscalessplitfngrstringistringrtibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml
A Guide to the GauPro R package
Rendered fromGauPro.Rmd
usingknitr::rmarkdown
on Nov 26 2024.Last update: 2022-11-14
Started: 2017-08-17
Derivatives for estimating Gaussian process parameters
Rendered fromderivatives.Rmd
usingknitr::rmarkdown
on Nov 26 2024.Last update: 2024-09-27
Started: 2017-08-17
Introduction to Gaussian Processes
Rendered fromIntroductionToGPs.Rmd
usingknitr::rmarkdown
on Nov 26 2024.Last update: 2023-02-27
Started: 2017-08-17
Leave-one-out cross-validation and error correction
Rendered fromCrossValidationErrorCorrection.Rmd
usingknitr::rmarkdown
on Nov 26 2024.Last update: 2022-11-14
Started: 2017-08-17
Spatial derivatives of Gaussian process models
Rendered fromsurface_derivatives.Rmd
usingknitr::rmarkdown
on Nov 26 2024.Last update: 2022-11-14
Started: 2017-08-17