Package: GWlasso 1.0.1
GWlasso: Geographically Weighted Lasso
Performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions. These methods are specially well suited for ecological inferences. Bandwidth selection algorithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.
Authors:
GWlasso_1.0.1.tar.gz
GWlasso_1.0.1.tar.gz(r-4.5-noble)GWlasso_1.0.1.tar.gz(r-4.4-noble)
GWlasso_1.0.1.tgz(r-4.4-emscripten)GWlasso_1.0.1.tgz(r-4.3-emscripten)
GWlasso.pdf |GWlasso.html✨
GWlasso/json (API)
NEWS
# Install 'GWlasso' in R: |
install.packages('GWlasso', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nibortolum/gwlasso/issues
- Amesbury - Amesbury Testate Amoebae dataset
Last updated 1 days agofrom:eb81ae9a6a. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 23 2024 |
R-4.5-linux | OK | Nov 23 2024 |
Exports:%>%compute_distance_matrixgwl_bw_estimationgwl_fitplot_gwl_map
Dependencies:bootclassclassIntclicodacodetoolscolorspacecpp11crayonDBIdeldirDEoptimRdplyre1071fansifarverFNNforeachgenericsggplot2ggsideglmnetgluegtableGWmodelhmsintervalsisobanditeratorsKernSmoothlabelinglatticeLearnBayeslifecyclemagrittrMASSMatrixmgcvmultcompmunsellmvtnormnlmepillarpkgconfigprettyunitsprogressproxypurrrR6RColorBrewerRcppRcppArmadilloRcppEigenrlangrobustbases2sandwichscalessfshapespspacetimespatialregspDataspdepstringistringrsurvivalTH.datatibbletidyrtidyselectunitsutf8vctrsviridisLitewithrwkxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Amesbury Testate Amoebae dataset | Amesbury |
Compute distance matrix | compute_distance_matrix |
Bandwidth estimation for Geographically Weighted Lasso | gwl_bw_estimation |
Fit a geographically weighted lasso with the selected bandwidth | gwl_fit |
Plot a map of beta coefficient for gwlfit object | plot_gwl_map |
Plot method for gwlfit object | plot.gwlfit |
Predict method for gwlfit objects | predict.gwlfit |
Printing gwlest objects | print.gwlest |
Printing gwlfit objects | print.gwlfit |