Package: GWlasso 1.0.1

Matthieu Mulot

GWlasso: Geographically Weighted Lasso

Performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions. These methods are specially well suited for ecological inferences. Bandwidth selection algorithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.

Authors:Matthieu Mulot [aut, cre, cph], Sophie Erb [aut]

GWlasso_1.0.1.tar.gz
GWlasso_1.0.1.tar.gz(r-4.5-noble)GWlasso_1.0.1.tar.gz(r-4.4-noble)
GWlasso_1.0.1.tgz(r-4.4-emscripten)GWlasso_1.0.1.tgz(r-4.3-emscripten)
GWlasso.pdf |GWlasso.html
GWlasso/json (API)
NEWS

# Install 'GWlasso' in R:
install.packages('GWlasso', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nibortolum/gwlasso/issues

Datasets:
  • Amesbury - Amesbury Testate Amoebae dataset

2.70 score 5 scripts 5 exports 80 dependencies

Last updated 1 days agofrom:eb81ae9a6a. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-linuxOKNov 23 2024

Exports:%>%compute_distance_matrixgwl_bw_estimationgwl_fitplot_gwl_map

Dependencies:bootclassclassIntclicodacodetoolscolorspacecpp11crayonDBIdeldirDEoptimRdplyre1071fansifarverFNNforeachgenericsggplot2ggsideglmnetgluegtableGWmodelhmsintervalsisobanditeratorsKernSmoothlabelinglatticeLearnBayeslifecyclemagrittrMASSMatrixmgcvmultcompmunsellmvtnormnlmepillarpkgconfigprettyunitsprogressproxypurrrR6RColorBrewerRcppRcppArmadilloRcppEigenrlangrobustbases2sandwichscalessfshapespspacetimespatialregspDataspdepstringistringrsurvivalTH.datatibbletidyrtidyselectunitsutf8vctrsviridisLitewithrwkxtszoo

Example analysis

Rendered fromexample_analysis.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-11-22
Started: 2024-11-22