Package: GMKMcharlie 1.1.5

Charlie Wusuo Liu

GMKMcharlie: Unsupervised Gaussian Mixture and Minkowski and Spherical K-Means with Constraints

High performance trainers for parameterizing and clustering weighted data. The Gaussian mixture (GM) module includes the conventional EM (expectation maximization) trainer, the component-wise EM trainer, the minimum-message-length EM trainer by Figueiredo and Jain (2002) <doi:10.1109/34.990138>. These trainers accept additional constraints on mixture weights, covariance eigen ratios and on which mixture components are subject to update. The K-means (KM) module offers clustering with the options of (i) deterministic and stochastic K-means++ initializations, (ii) upper bounds on cluster weights (sizes), (iii) Minkowski distances, (iv) cosine dissimilarity, (v) dense and sparse representation of data input. The package improved the typical implementations of GM and KM algorithms in various aspects. It is carefully crafted in multithreaded C++ for modeling large data for industry use.

Authors:Charlie Wusuo Liu

GMKMcharlie_1.1.5.tar.gz
GMKMcharlie_1.1.5.tar.gz(r-4.5-noble)GMKMcharlie_1.1.5.tar.gz(r-4.4-noble)
GMKMcharlie_1.1.5.tgz(r-4.4-emscripten)GMKMcharlie_1.1.5.tgz(r-4.3-emscripten)
GMKMcharlie.pdf |GMKMcharlie.html
GMKMcharlie/json (API)
NEWS

# Install 'GMKMcharlie' in R:
install.packages('GMKMcharlie', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 stars 204 downloads 11 exports 3 dependencies

Last updated 4 years agofrom:ee895b1447. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-linux-x86_64NOTENov 20 2024

Exports:d2sGMGMcwGMfjKMKMconstrainedKMconstrainedSparseKMppIniKMppIniSparseKMsparses2d

Dependencies:RcppRcppArmadilloRcppParallel