Package: GLMaSPU 1.0

Chong Wu

GLMaSPU: An Adaptive Test on High Dimensional Parameters in Generalized Linear Models

Several tests for high dimensional generalized linear models have been proposed recently. In this package, we implemented a new test called adaptive sum of powered score (aSPU) for high dimensional generalized linear models, which is often more powerful than the existing methods in a wide scenarios. We also implemented permutation based version of several existing methods for research purpose. We recommend users use the aSPU test for their real testing problem. You can learn more about the tests implemented in the package via the following papers: 1. Pan, W., Kim, J., Zhang, Y., Shen, X. and Wei, P. (2014) <doi:10.1534/genetics.114.165035> A powerful and adaptive association test for rare variants, Genetics, 197(4). 2. Guo, B., and Chen, S. X. (2016) <doi:10.1111/rssb.12152>. Tests for high dimensional generalized linear models. Journal of the Royal Statistical Society: Series B. 3. Goeman, J. J., Van Houwelingen, H. C., and Finos, L. (2011) <doi:10.1093/biomet/asr016>. Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control. Biometrika, 98(2).

Authors:Chong Wu and Wei Pan

GLMaSPU_1.0.tar.gz
GLMaSPU_1.0.tar.gz(r-4.5-noble)GLMaSPU_1.0.tar.gz(r-4.4-noble)
GLMaSPU_1.0.tgz(r-4.4-emscripten)GLMaSPU_1.0.tgz(r-4.3-emscripten)
GLMaSPU.pdf |GLMaSPU.html
GLMaSPU/json (API)

# Install 'GLMaSPU' in R:
install.packages('GLMaSPU', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 5 scripts 156 downloads 5 exports 5 dependencies

Last updated 8 years agofrom:bb8114a03e. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-linux-x86_64OKNov 14 2024

Exports:aSPU_apvalaSPU_permgenerate_dataGoeman_permHDGLM_perm

Dependencies:MASSmnormtmvtnormRcppRcppArmadillo