Package: GFM 1.2.1

Wei Liu

GFM: Generalized Factor Model

Generalized factor model is implemented for ultra-high dimensional data with mixed-type variables. Two algorithms, variational EM and alternate maximization, are designed to implement the generalized factor model, respectively. The factor matrix and loading matrix together with the number of factors can be well estimated. This model can be employed in social and behavioral sciences, economy and finance, and genomics, to extract interpretable nonlinear factors. More details can be referred to Wei Liu, Huazhen Lin, Shurong Zheng and Jin Liu. (2021) <doi:10.1080/01621459.2021.1999818>.

Authors:Wei Liu [aut, cre], Huazhen Lin [aut], Shurong Zheng [aut], Jin Liu [aut], Jinyu Nie [aut]

GFM_1.2.1.tar.gz
GFM_1.2.1.tar.gz(r-4.5-noble)GFM_1.2.1.tar.gz(r-4.4-noble)
GFM_1.2.1.tgz(r-4.4-emscripten)GFM_1.2.1.tgz(r-4.3-emscripten)
GFM.pdf |GFM.html
GFM/json (API)

# Install 'GFM' in R:
install.packages('GFM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/feiyoung/gfm/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

openblascpp

4.26 score 2 packages 9 scripts 191 downloads 2 mentions 7 exports 11 dependencies

Last updated 1 years agofrom:7b0303c87c. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 24 2024
R-4.5-linux-x86_64OKDec 24 2024

Exports:chooseFacNumberFactormgendatagfmmeasurefunoverdispersedGFMOverGFMchooseFacNumber

Dependencies:codetoolsdoSNOWforeachirlbaiteratorslatticeMASSMatrixRcppRcppArmadillosnow

GFM: A Simple Transcriptomics Data

Rendered fromGFM.Brain.Rmdusingknitr::rmarkdownon Dec 24 2024.

Last update: 2023-08-11
Started: 2022-01-05

GFM: alternate maximization and information criterion

Rendered fromGFM.Simu.Rmdusingknitr::rmarkdownon Dec 24 2024.

Last update: 2023-08-11
Started: 2022-01-05

Installation

Rendered fromRGFM.Rmdusingknitr::rmarkdownon Dec 24 2024.

Last update: 2023-08-11
Started: 2022-01-05