Package: FRESHD 1.0

Adam Lund

FRESHD: Fast Robust Estimation of Signals in Heterogeneous Data

Procedure for solving the maximin problem for identical design across heterogeneous data groups. Particularly efficient when the design matrix is either orthogonal or has tensor structure. Orthogonal wavelets can be specified for 1d, 2d or 3d data simply by name. For tensor structured design the tensor components (two or three) may be supplied. The package also provides an efficient implementation of the generic magging estimator.

Authors:Adam Lund [aut, cre, ctb, cph], Benjamin Stephens [ctb, cph], Gael Guennebaud [ctb, cph], Angelo Furfaro [ctb, cph], Luca Di Gaspero [ctb, cph], Brandon Whitcher [ctb, cph]

FRESHD_1.0.tar.gz
FRESHD_1.0.tar.gz(r-4.5-noble)FRESHD_1.0.tar.gz(r-4.4-noble)
FRESHD_1.0.tgz(r-4.4-emscripten)FRESHD_1.0.tgz(r-4.3-emscripten)
FRESHD.pdf |FRESHD.html
FRESHD/json (API)

# Install 'FRESHD' in R:
install.packages('FRESHD', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 167 downloads 5 exports 4 dependencies

Last updated 3 years agofrom:62d6c26fa0. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-linux-x86_64NOTENov 20 2024

Exports:iwtmaggingmaximinRHwt

Dependencies:glamlassoRcppRcppArmadilloRcppEigen