Package: FLLat 1.2-1

Gen Nowak

FLLat: Fused Lasso Latent Feature Model

Fits the Fused Lasso Latent Feature model, which is used for modeling multi-sample aCGH data to identify regions of copy number variation (CNV). Produces a set of features that describe the patterns of CNV and a set of weights that describe the composition of each sample. Also provides functions for choosing the optimal tuning parameters and the appropriate number of features, and for estimating the false discovery rate.

Authors:Gen Nowak [aut, cre], Trevor Hastie [aut], Jonathan R. Pollack [aut], Robert Tibshirani [aut], Nicholas Johnson [aut]

FLLat_1.2-1.tar.gz
FLLat_1.2-1.tar.gz(r-4.5-noble)FLLat_1.2-1.tar.gz(r-4.4-noble)
FLLat_1.2-1.tgz(r-4.4-emscripten)FLLat_1.2-1.tgz(r-4.3-emscripten)
FLLat.pdf |FLLat.html
FLLat/json (API)
NEWS

# Install 'FLLat' in R:
install.packages('FLLat', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

cpp

2.08 score 12 scripts 257 downloads 4 exports 5 dependencies

Last updated 8 years agofrom:716ac34e2f. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 02 2024
R-4.5-linux-x86_64OKNov 02 2024

Exports:FLLatFLLat.BICFLLat.FDRFLLat.PVE

Dependencies:bitopscaToolsgplotsgtoolsKernSmooth

FLLat Tutorial

Rendered fromFLLat_tutorial.rnwusingutils::Sweaveon Dec 02 2024.

Last update: 2017-05-23
Started: 2014-01-06