Package: EvidenceSynthesis 0.5.0

Martijn Schuemie

EvidenceSynthesis: Synthesizing Causal Evidence in a Distributed Research Network

Routines for combining causal effect estimates and study diagnostics across multiple data sites in a distributed study, without sharing patient-level data. Allows for normal and non-normal approximations of the data-site likelihood of the effect parameter.

Authors:Martijn Schuemie [aut, cre], Marc A. Suchard [aut], Fan Bu [aut], Observational Health Data Science and Informatics [cph]

EvidenceSynthesis_0.5.0.tar.gz
EvidenceSynthesis_0.5.0.tar.gz(r-4.5-noble)EvidenceSynthesis_0.5.0.tar.gz(r-4.4-noble)
EvidenceSynthesis_0.5.0.tgz(r-4.4-emscripten)EvidenceSynthesis_0.5.0.tgz(r-4.3-emscripten)
EvidenceSynthesis.pdf |EvidenceSynthesis.html
EvidenceSynthesis/json (API)
NEWS

# Install 'EvidenceSynthesis' in R:
install.packages('EvidenceSynthesis', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/ohdsi/evidencesynthesis/issues3 issues

Pkgdown site:https://ohdsi.github.io

Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT
Datasets:
  • ncLikelihoods - Example profile likelihoods for negative control outcomes
  • ooiLikelihoods - Example profile likelihoods for a synthetic outcome of interest

On CRAN:

Conda:

openjdk

3.18 score 447 downloads 27 exports 86 dependencies

Last updated 2 years agofrom:4b1759c186. Checks:1 OK, 2 WARNING. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 27 2025
R-4.5-linuxWARNINGMar 27 2025
R-4.4-linuxWARNINGMar 27 2025

Exports:approximateHierarchicalNormalPosteriorapproximateLikelihoodapproximateSimplePosteriorbiasCorrectionInferencecomputeBayesianMetaAnalysiscomputeConfidenceIntervalcomputeFixedEffectMetaAnalysiscreateSimulationSettingscustomFunctiondetectApproximationTypefitBiasDistributionplotBiasCorrectionInferenceplotBiasDistributionplotCovariateBalancesplotEmpiricalNullsplotLikelihoodFitplotMcmcTraceplotMetaAnalysisForestplotPerDbMcmcTraceplotPerDbPosteriorplotPosteriorplotPreparedPspreparePsPlotsequentialFitBiasDistributionsimulatePopulationsskewNormalsupportsJava8

Dependencies:AndromedaBeastJarbitbit64blobbootcachemclicliprcodacolorspaceCompQuadFormcpp11crayonCyclopsDBIdbplyrdigestdistributionaldplyrEmpiricalCalibrationfansifarverfastmapgenericsggdistggplot2gluegridExtragtableHDIntervalhmsisobandlabelinglatticelifecyclelme4magrittrMASSmathjaxrMatrixmemoisemetametadatmetaformgcvminqamunsellnlmenloptrnumDerivpbapplypillarpkgconfigplogrprettyunitsprogresspurrrquadprogR6rbibutilsRColorBrewerRcppRcppEigenRcppParallelRdpackreadrreformulasrJavarlangRSQLitescalesstringistringrsurvivaltibbletidyrtidyselecttzdbutf8vctrsviridisLitevroomwithrxml2zip

Bayesian adaptive bias correction using profile likelihoods

Rendered fromBayesianBiasCorrection.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2023-05-08
Started: 2023-05-08

Code used in the video vignette

Rendered fromVideoVignette.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2023-05-08
Started: 2023-04-05

Effect estimate synthesis using non-normal likelihood approximations

Rendered fromNonNormalEffectSynthesis.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2023-05-08
Started: 2020-11-19

Citation

To cite package ‘EvidenceSynthesis’ in publications use:

Schuemie M, Suchard M, Bu F (2023). EvidenceSynthesis: Synthesizing Causal Evidence in a Distributed Research Network. R package version 0.5.0, https://CRAN.R-project.org/package=EvidenceSynthesis.

Corresponding BibTeX entry:

  @Manual{,
    title = {EvidenceSynthesis: Synthesizing Causal Evidence in a
      Distributed Research Network},
    author = {Martijn Schuemie and Marc A. Suchard and Fan Bu},
    year = {2023},
    note = {R package version 0.5.0},
    url = {https://CRAN.R-project.org/package=EvidenceSynthesis},
  }

Readme and manuals

EvidenceSynthesis

EvidenceSynthesis is part of HADES.

Introduction

This R package contains routines for combining causal effect estimates and study diagnostics across multiple data sites in a distributed study. This includes functions for performing meta-analysis and forest plots.

Features

  • Perform a traditional fixed-effects or random-effects meta-analysis, and create a forest plot.
  • Use non-normal approximations of the per-data-site likelihood function to avoid bias when facing small and zero counts.

Example

# Simulate some data for this example:
populations <- simulatePopulations()

# Fit a Cox regression at each data site, and approximate likelihood function:
fitModelInDatabase <- function(population) {
  cyclopsData <- Cyclops::createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
                                            data = population,
                                            modelType = "cox")
  cyclopsFit <- Cyclops::fitCyclopsModel(cyclopsData)
  approximation <- approximateLikelihood(cyclopsFit, parameter = "x", approximation = "custom")
  return(approximation)
}
approximations <- lapply(populations, fitModelInDatabase)
approximations <- do.call("rbind", approximations)

# At study coordinating center, perform meta-analysis using per-site approximations:
estimate <- computeBayesianMetaAnalysis(approximations)
estimate
#          mu     mu95Lb   mu95Ub      muSe       tau     tau95Lb   tau95Ub     logRr   seLogRr
# 1 0.5770562 -0.2451619 1.382396 0.4154986 0.2733942 0.004919128 0.7913512 0.5770562 0.4152011

Technology

This an R package with some parts implemented in Java.

System requirements

Requires R and Java.

Getting Started

  1. Make sure your R environment is properly configured. This means that Java must be installed. See these instructions for how to configure your R environment.

  2. In R, use the following commands to download and install EvidenceSynthesis:

    install.packages("EvidenceSynthesis")
    

User Documentation

Documentation can be found on the package website.

PDF versions of the documentation are also available:

Support

Contributing

Read here how you can contribute to this package.

License

EvidenceSynthesis is licensed under Apache License 2.0

Development

This package is being developed in RStudio.

Development status

Beta

Help Manual

Help pageTopics
Approximate Bayesian posterior for hierarchical Normal modelapproximateHierarchicalNormalPosterior
Approximate a likelihood functionapproximateLikelihood
Approximate simple Bayesian posteriorapproximateSimplePosterior
Bias Correction with InferencebiasCorrectionInference
Compute a Bayesian random-effects meta-analysiscomputeBayesianMetaAnalysis
Compute the point estimate and confidence interval given a likelihood function approximationcomputeConfidenceInterval
Compute a fixed-effect meta-analysiscomputeFixedEffectMetaAnalysis
Create simulation settingscreateSimulationSettings
A custom function to approximate a log likelihood functioncustomFunction
Detect the type of likelihood approximation based on the data formatdetectApproximationType
Fit Bias DistributionfitBiasDistribution
Example profile likelihoods for negative control outcomesncLikelihoods
Example profile likelihoods for a synthetic outcome of interestooiLikelihoods
Plot bias correction inferenceplotBiasCorrectionInference
Plot bias distributionsplotBiasDistribution
Plot covariate balancesplotCovariateBalances
Plot empirical null distributionsplotEmpiricalNulls
Plot the likelihood approximationplotLikelihoodFit
Plot MCMC traceplotMcmcTrace
Create a forest plotplotMetaAnalysisForest
Plot MCMC trace for individual databasesplotPerDbMcmcTrace
Plot posterior density per databaseplotPerDbPosterior
Plot posterior densityplotPosterior
Plot the propensity score distributionplotPreparedPs
Prepare to plot the propensity score distributionpreparePsPlot
Fit Bias Distribution Sequentially or in GroupssequentialFitBiasDistribution
Simulate survival data for multiple databasessimulatePopulations
The skew normal function to approximate a log likelihood functionskewNormal
Determine if Java virtual machine supports JavasupportsJava8