Package: EMgaussian 0.2.1
EMgaussian: Expectation-Maximization Algorithm for Multivariate Normal (Gaussian) with Missing Data
Initially designed to distribute code for estimating the Gaussian graphical model with Lasso regularization, also known as the graphical lasso (glasso), using an Expectation-Maximization (EM) algorithm based on work by Städler and Bühlmann (2012) <doi:10.1007/s11222-010-9219-7>. As a byproduct, code for estimating means and covariances (or the precision matrix) under a multivariate normal (Gaussian) distribution is also available.
Authors:
EMgaussian_0.2.1.tar.gz
EMgaussian_0.2.1.tar.gz(r-4.5-noble)EMgaussian_0.2.1.tar.gz(r-4.4-noble)
EMgaussian_0.2.1.tgz(r-4.4-emscripten)EMgaussian_0.2.1.tgz(r-4.3-emscripten)
EMgaussian.pdf |EMgaussian.html✨
EMgaussian/json (API)
# Install 'EMgaussian' in R: |
install.packages('EMgaussian', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 10 months agofrom:eb506d204d. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 30 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 30 2024 |
Exports:em.covem.precEMggmrhogridstartvals.cov
Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2glassoglassoFastglobalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalavaanlifecyclelistenvlubridatemagrittrMASSMatrixmatrixcalcmgcvmnormtModelMetricsmunsellnlmennetnumDerivparallellypbivnormpillarpkgconfigplyrpROCprodlimprogressrproxypurrrquadprogR6RColorBrewerRcppRcppArmadillorecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr