Package: DSWE 1.8.2

Yu Ding

DSWE: Data Science for Wind Energy

Data science methods used in wind energy applications. Current functionalities include creating a multi-dimensional power curve model, performing power curve function comparison, covariate matching, and energy decomposition. Relevant works for the developed functions are: funGP() - Prakash et al. (2022) <doi:10.1080/00401706.2021.1905073>, AMK() - Lee et al. (2015) <doi:10.1080/01621459.2014.977385>, tempGP() - Prakash et al. (2022) <doi:10.1080/00401706.2022.2069158>, ComparePCurve() - Ding et al. (2021) <doi:10.1016/j.renene.2021.02.136>, deltaEnergy() - Latiffianti et al. (2022) <doi:10.1002/we.2722>, syncSize() - Latiffianti et al. (2022) <doi:10.1002/we.2722>, imptPower() - Latiffianti et al. (2022) <doi:10.1002/we.2722>, All other functions - Ding (2019, ISBN:9780429956508).

Authors:Nitesh Kumar [aut], Abhinav Prakash [aut], Yu Ding [aut, cre], Effi Latiffianti [ctb, cph], Ahmadreza Chokhachian [ctb, cph]

DSWE_1.8.2.tar.gz
DSWE_1.8.2.tar.gz(r-4.5-noble)DSWE_1.8.2.tar.gz(r-4.4-noble)
DSWE_1.8.2.tgz(r-4.4-emscripten)DSWE_1.8.2.tgz(r-4.3-emscripten)
DSWE.pdf |DSWE.html
DSWE/json (API)

# Install 'DSWE' in R:
install.packages('DSWE', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tamu-aml/dswe-package/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • data1 - Wind Energy data set containing 47,542 data points
  • data2 - Wind Energy data set containing 48,068 data points

openblascpp

1.48 score 230 downloads 1 mentions 16 exports 83 dependencies

Last updated 11 months agofrom:a138270529. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 14 2024
R-4.5-linux-x86_64OKDec 14 2024

Exports:AMKComparePCurveComputeWeightedDifferenceCovMatchdeltaEnergyfunGPimptPowerKnnPCFitKnnPredictKnnUpdateSplinePCFitSvmPCFitsyncSizetempGPupdateDataXgbPCFit

Dependencies:askpassbase64encbslibcachemclassclicolorspacecpp11crosstalkcurldata.tabledigestdplyre1071evaluatefansifarverfastmapFNNfontawesomefsgenericsggplot2gluegssgtablehighrhtmltoolshtmlwidgetshttrisobandjquerylibjsonlitekernlabKernSmoothknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmatrixStatsmemoisemgcvmimemixtoolsmunsellnlmeopensslpillarpkgconfigplotlypromisesproxypurrrR6rappdirsRColorBrewerRcppRcppArmadillorlangrmarkdownsassscalessegmentedstringistringrsurvivalsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunxgboostyaml