Package: DGP4LCF 1.0.0

Jiachen Cai

DGP4LCF: Dependent Gaussian Processes for Longitudinal Correlated Factors

Functionalities for analyzing high-dimensional and longitudinal biomarker data to facilitate precision medicine, using a joint model of Bayesian sparse factor analysis and dependent Gaussian processes. This paper illustrates the method in detail: J Cai, RJB Goudie, C Starr, BDM Tom (2023) <doi:10.48550/arXiv.2307.02781>.

Authors:Jiachen Cai [aut, cre]

DGP4LCF_1.0.0.tar.gz
DGP4LCF_1.0.0.tar.gz(r-4.5-noble)DGP4LCF_1.0.0.tar.gz(r-4.4-noble)
DGP4LCF.pdf |DGP4LCF.html
DGP4LCF/json (API)

# Install 'DGP4LCF' in R:
install.packages('DGP4LCF', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

2.30 score 3 scripts 473 downloads 13 exports 82 dependencies

Last updated 7 months agofrom:ae46984161. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 25 2024
R-4.5-linux-x86_64OKDec 25 2024

Exports:factor_loading_heatmapfactor_score_trajectorygibbs_after_mcem_algorithmgibbs_after_mcem_combine_chainsgibbs_after_mcem_diff_initialsgibbs_after_mcem_load_chainsmcem_algorithmmcem_cov_plotmcem_parameter_setupnumerics_summary_do_not_need_alignmentnumerics_summary_need_alignmentsubject_specific_objectstable_generator

Dependencies:ashbitopscliclustercodacodetoolscolorspacecombinatcorrplotdeldirdeSolvedoParalleldotCall64evaluatefactor.switchingfansifarverfdafda.uscfdsfieldsFNNforeachggplot2glueGPFDAgtableHDIntervalhdrcdehighrinterpisobanditeratorskernlabKernSmoothknitrkskSampleslabelinglatticelifecyclelocfitlpSolvemagrittrmapsMASSMatrixMatrixModelsmclustmcmcMCMCpackmgcvmulticoolmunsellmvtnormnlmepcaPPpheatmappillarpkgconfigpracmaquantregR6rainbowRColorBrewerRcppRcppArmadilloRcppEigenRCurlrlangscalesspamSparseMSuppDistssurvivaltibbleutf8vctrsviridisLitewithrxfunyaml

An Example of Irregular Data Analysis

Rendered frombsfadgp_irregular_data_example.Rmdusingknitr::rmarkdownon Dec 25 2024.

Last update: 2024-05-29
Started: 2024-05-29

An Example of Regular Data Analysis

Rendered frombsfadgp_regular_data_example.Rmdusingknitr::rmarkdownon Dec 25 2024.

Last update: 2024-05-29
Started: 2024-05-29

Readme and manuals

Help Manual

Help pageTopics
Displaying significant factor loadings in the heatmap.factor_loading_heatmap
Plotting figures for factor score trajectory.factor_score_trajectory
Generating posterior samples for parameters (other than DGP parameters) in the model and predicted gene expression for one chain.gibbs_after_mcem_algorithm
Combining from all chains the posterior samples for parameters in the model and predicted gene expressions.gibbs_after_mcem_combine_chains
Generating different initials for multiple chains.gibbs_after_mcem_diff_initials
Loading the saved posterior samples for parameters in the model and predicted gene expressions.gibbs_after_mcem_load_chains
Monte Carlo Expectation Maximization (MCEM) algorithm to return the Maximum Likelihood Estimate (MLE) of DGP Parameters.mcem_algorithm
Visualizing cross-correlations among factors.mcem_cov_plot
Parameters' setup and initial value assignment for the Monte Carlo Expectation Maximization (MCEM) algorithm.mcem_parameter_setup
Numerical summary for important continuous variables that do not need alignment.numerics_summary_do_not_need_alignment
Numerical summary for factor loadings and factor scores, which need alignment.numerics_summary_need_alignment
Initials values.sim_fcs_init
Results when people have irregularly observed time points (some 6 while others 8).sim_fcs_results_irregular_6_8
Results when people are observed at common 8 time points.sim_fcs_results_regular_8
Truth of simulated data.sim_fcs_truth
Constructing subject-specific objects required for Gibbs sampler (for subjects with incomplete observations only).subject_specific_objects
Generating a table listing all possible combinations of the binary variables for one gene.table_generator