Package: DCSmooth 1.1.2

Bastian Schaefer

DCSmooth: Nonparametric Regression and Bandwidth Selection for Spatial Models

Nonparametric smoothing techniques for data on a lattice and functional time series. Smoothing is done via kernel regression or local polynomial regression, a bandwidth selection procedure based on an iterative plug-in algorithm is implemented. This package allows for modeling a dependency structure of the error terms of the nonparametric regression model. Methods used in this paper are described in Feng/Schaefer (2021) <https://ideas.repec.org/p/pdn/ciepap/144.html>, Schaefer/Feng (2021) <https://ideas.repec.org/p/pdn/ciepap/143.html>.

Authors:Bastian Schaefer [aut, cre], Sebastian Letmathe [ctb], Yuanhua Feng [ths]

DCSmooth_1.1.2.tar.gz
DCSmooth_1.1.2.tar.gz(r-4.5-noble)DCSmooth_1.1.2.tar.gz(r-4.4-noble)
DCSmooth_1.1.2.tgz(r-4.4-emscripten)DCSmooth_1.1.2.tgz(r-4.3-emscripten)
DCSmooth.pdf |DCSmooth.html
DCSmooth/json (API)
NEWS

# Install 'DCSmooth' in R:
install.packages('DCSmooth', repos = 'https://cloud.r-project.org')
Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascppopenmp

2.70 score 209 downloads 11 exports 76 dependencies

Last updated 3 years agofrom:a26fd36e45. Checks:1 OK, 2 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 04 2025
R-4.5-linux-x86_64NOTEMar 04 2025
R-4.4-linux-x86_64NOTEMar 04 2025

Exports:dcskernel.assignkernel.listqarma.estqarma.simsarma.estsarma.simset.optionssfarima.estsfarima.simsurface.dcs

Dependencies:askpassbase64encbslibcachemclicodetoolscolorspacecpp11crosstalkcurldata.tabledigestdoParalleldplyrevaluatefansifarverfastmapfontawesomeforeachfracdifffsgenericsggplot2gluegtablehighrhtmltoolshtmlwidgetshttrisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmeopensslpillarpkgconfigplotlypromisespurrrR6rappdirsRColorBrewerRcppRcppArmadillorlangrmarkdownsassscalesstringistringrsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml

DCSmooth

Rendered fromDCSmooth.Rmdusingknitr::rmarkdownon Mar 04 2025.

Last update: 2021-10-21
Started: 2021-08-12

Citation

To cite package ‘DCSmooth’ in publications use:

Schaefer B (2021). DCSmooth: Nonparametric Regression and Bandwidth Selection for Spatial Models. R package version 1.1.2, https://CRAN.R-project.org/package=DCSmooth.

Corresponding BibTeX entry:

  @Manual{,
    title = {DCSmooth: Nonparametric Regression and Bandwidth Selection
      for Spatial Models},
    author = {Bastian Schaefer},
    year = {2021},
    note = {R package version 1.1.2},
    url = {https://CRAN.R-project.org/package=DCSmooth},
  }

Readme and manuals

DCSmooth

Overview

DCSmooth provides functions for fast nonparametric estimation of the trend surface of a functional or spatial model. Regression types included are kernel regression and local polynomial regression. An automatic bandwidth selector is included.

Installation

You can install the released version of DCSmooth from CRAN with:

install.packages("DCSmooth")
## Example

This basic example shows the two-dimensional estimation of a single gaussian peak
function (in `y.norm1`).


```r
library(DCSmooth)

# simulated data
y = y.norm1 + matrix(rnorm(101^2), nrow = 101, ncol = 101)

# smooth trend surface
y_dcs = dcs(y)
plot(y_dcs, plot_choice = 2)
# surface.dcs(y_dcs, plot_choice = 2)

Details

For a detailed description, see the vignette of this package.

vignette("DCSmooth")

Help Manual

Help pageTopics
Nonparametric Regression and Bandwidth Selection for Spatial ModelsDCSmooth-package DCSmooth
Nonparametric Double Conditional Smoothing for 2D Surfacesdcs
Assign a Kernel Functionkernel.assign
Print a list of available kernels in the DCSmooth packagekernel.list
Contour Plot for the Double Conditional Smoothingplot.dcs
Summarize Results from Double Conditional Smoothingprint.dcs
Print and Summarize Options for Double Conditional Smoothingprint.dcs_options
Print the Summary of a DCS estimationprint.summary_dcs
Print the Summary of a "sarma"/"sfarima" objectprint.summary_sarma print.summary_sfarima
Residuals of "dcs"-objectresiduals.dcs
Returns of Allianz SEreturns.alv
Estimation of an SARMA-processqarma.est sarma.est
Simulation of a SARMA(p, q)-processqarma.sim sarma.sim
Set Options for the DCS procedureset.options
Estimation of a SFARIMA-processsfarima.est
Simulation of a SFARIMA(p, q, d)-processsfarima.sim
Summarizing Results from Double Conditional Smoothingsummary.dcs
Print and Summarize Options for Double Conditional Smoothingsummary.dcs_options
Summarizing SARMA/SFARIMA Estimation or Simulationsummary.sarma summary.sfarima
3D Surface Plot of "dcs"-object or numeric matrixsurface.dcs
Temperatures from Nunn, COtemp.nunn
Temperatures from Yuma, AZtemp.yuma
Volumes of Allianz SEvolumes.alv
Wind Speed from Nunn, COwind.nunn
Wind Speed from Yuma, AZwind.yuma
Single Gaussian Peaky.norm1
Double Gaussian Peaky.norm2
Double Gaussian Ridgesy.norm3