Package: COMBO 1.2.0
COMBO: Correcting Misclassified Binary Outcomes in Association Studies
Use frequentist and Bayesian methods to estimate parameters from a binary outcome misclassification model. These methods correct for the problem of "label switching" by assuming that the sum of outcome sensitivity and specificity is at least 1. A description of the analysis methods is available in Hochstedler and Wells (2023) <doi:10.48550/arXiv.2303.10215>.
Authors:
COMBO_1.2.0.tar.gz
COMBO_1.2.0.tar.gz(r-4.5-noble)COMBO_1.2.0.tar.gz(r-4.4-noble)
COMBO_1.2.0.tgz(r-4.4-emscripten)COMBO_1.2.0.tgz(r-4.3-emscripten)
COMBO.pdf |COMBO.html✨
COMBO/json (API)
# Install 'COMBO' in R: |
install.packages('COMBO', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- COMBO_EM_data - Test data for the COMBO_EM function
- LSAC_data - Example data from The Law School Admissions Council's
- VPRAI_synthetic_data - Synthetic example data of pretrial failure risk factors and outcomes, VPRAI recommendations, and judge decisions
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 26 days agofrom:eb3515bd03. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-linux | OK | Oct 31 2024 |
Exports:COMBO_dataCOMBO_data_2stageCOMBO_EMCOMBO_EM_2stageCOMBO_MCMCCOMBO_MCMC_2stagemisclassification_probmisclassification_prob2true_classification_prob
Dependencies:clicodacodetoolscpp11DBIdoParalleldplyrfansiforeachgenericsglueiteratorslatticelifecyclemagrittrMASSMatrixMatrixModelsminqamitoolsnloptrnumDerivoptimxpillarpkgconfigpracmapurrrquantregR6RcppRcppArmadillorjagsrlangSAMBASparseMstringistringrsurveysurvivaltibbletidyrtidyselectturboEMutf8vctrswithr
COMBO Notation Guide
Rendered fromCOMBO_notation_guide.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2024-10-30
Started: 2023-04-19
COMBO Notation Guide - Two-stage Misclassification Model
Rendered fromCOMBO_notation_guide_2stage.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2024-10-30
Started: 2023-04-19