Package: BayesSurvive 0.0.2

Zhi Zhao

BayesSurvive: Bayesian Survival Models for High-Dimensional Data

An implementation of Bayesian survival models with graph-structured selection priors for sparse identification of omics features predictive of survival (Madjar et al., 2021 <doi:10.1186/s12859-021-04483-z>) and its extension to use a fixed graph via a Markov Random Field (MRF) prior for capturing known structure of omics features, e.g. disease-specific pathways from the Kyoto Encyclopedia of Genes and Genomes database.

Authors:Zhi Zhao [aut, cre], Katrin Madjar [aut], Tobias Østmo Hermansen [aut], Manuela Zucknick [ctb], Jörg Rahnenführer [ctb]

BayesSurvive_0.0.2.tar.gz
BayesSurvive_0.0.2.tar.gz(r-4.5-noble)BayesSurvive_0.0.2.tar.gz(r-4.4-noble)
BayesSurvive_0.0.2.tgz(r-4.4-emscripten)
BayesSurvive.pdf |BayesSurvive.html
BayesSurvive/json (API)
NEWS

# Install 'BayesSurvive' in R:
install.packages('BayesSurvive', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ocbe-uio/bayessurvive/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

3.00 score 1 scripts 189 downloads 7 exports 118 dependencies

Last updated 6 months agofrom:4c24b33005. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-linux-x86_64OKNov 02 2024

Exports:BayesSurvivefunc_MCMCfunc_MCMC_graphplotBrierUpdateGammaUpdateRPlee11VS

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercmprskcodetoolscolorspacecpp11crayondata.tablediagramdigestdoParalleldplyrevaluatefansifarverfastmapfontawesomeforcatsforeachforeignFormulafsfuturefuture.applygenericsGGallyggplot2ggstatsglobalsgluegridExtragtablehighrHmischmshtmlTablehtmltoolshtmlwidgetsisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvmagrittrMASSMatrixMatrixModelsmemoisemetsmgcvmimemultcompmunsellmvtnormnlmennetnumDerivparallellypatchworkpillarpkgconfigplotrixplyrpolsplineprettyunitsprodlimprogressprogressrPublishpurrrquantregR6rangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenriskRegressionrlangrmarkdownrmsrpartrstudioapisandwichsassscalesshapeSparseMSQUAREMstringistringrsurvivalTH.datatibbletidyrtidyselecttimeregtinytexutf8vctrsviridisviridisLitewithrxfunyamlzoo

Bayesian Cox Models with graph-structure priors

Rendered fromBayesCox.Rmdusingknitr::rmarkdownon Nov 02 2024.

Last update: 2024-06-05
Started: 2024-06-05